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Abstract

This paper documents our investigation into probabilistic positional
priors for transformer attention mechanisms and the technical challenges
encountered during implementation. We propose a modification to stan-
dard attention that incorporates learnable positional decay and scale pa-
rameters, building on prior work in relative position encodings and learned
attention biases. While our baseline implementation of the Qwen atten-
tion achieved a validation loss of 5.13 on the FineWeb dataset (compared
to the reference Qwen baseline of 4.9266), we encountered persistent ten-
sor shape mismatches when integrating our probabilistic modifications.
We analyze these implementation challenges in detail and discuss lessons
learned for future work in attention mechanism modifications.

1 Introduction

Transformer architectures have demonstrated remarkable success in natural lan-
guage processing, largely due to their attention mechanisms. The standard
scaled dot-product attention computes pairwise interactions between all tokens,
while numerous extensions have proposed incorporating structural biases like
positional information. Our work investigates whether adding learnable proba-
bilistic positional priors could improve attention computation while maintaining
computational efficiency.

Our key contributions include:

� A detailed proposal for integrating probabilistic positional priors into
transformer attention

� Analysis of implementation challenges encountered when modifying exist-
ing attention implementations

� Empirical validation of the baseline Qwen attention implementation

� Discussion of lessons learned for future attention mechanism modifications
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2 Related Work

Prior work has explored various approaches to incorporating positional infor-
mation into transformers:

Fixed Positional Encodings The original transformer paper [1] introduced
sinusoidal positional embeddings. Subsequent work developed learned positional
embeddings [6].

Relative Position Encodings Shaw et al. [2] proposed relative position
representations in self-attention. Dai et al. [3] extended this with Transformer-
XL.

Learned Attention Biases Ke et al. [4] introduced learnable position bi-
ases in Performers. Our approach differs by modeling position as a learnable
probabilistic prior with decay characteristics.

Bayesian Attention Recent work [5] has explored probabilistic interpreta-
tions of attention, though with different formulations than our proposed ap-
proach.

3 Method

Our proposed probabilistic attention modifies the standard scaled dot-product
attention by adding a learnable positional component:

Aij =
QiK

T
j√

dk
+ ϕ(|i− j|;α, β) (1)

where ϕ(d;α, β) = −|αd|β is our learnable positional prior with parameters
α (decay rate) and β (curvature). These parameters are initialized to 1 and
learned during training.

The implementation challenges we encountered stemmed from:

� Shape mismatches when combining the positional prior with attention
scores

� Integration with the existing rotary position embeddings

� Maintaining compatibility with the caching mechanism for efficient infer-
ence
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4 Experimental Setup

We evaluated on the FineWeb dataset using a Qwen-style transformer with
134M parameters. The model was trained for 640 steps with a batch size of
4.2M tokens using Chinchilla-optimal training configuration. Our baseline used
the standard Qwen attention implementation.

5 Results

Table 1: Model Performance Comparison on FineWeb Dataset

Method Parameters Validation Loss
Qwen Baseline 134M 4.9266
Our Baseline Implementation 134M 5.13

The baseline Qwen attention implementation achieved a validation loss of
5.13, compared to the reference Qwen baseline of 4.9266. This slight degradation
may be due to differences in implementation details or initialization.

Key implementation challenges included:

� Tensor shape mismatches when broadcasting the positional prior

� Difficulty integrating with the existing rotary position embeddings

� Maintaining compatibility with the KV cache during inference

6 Discussion

Our experience highlights several important considerations when modifying at-
tention mechanisms:

Shape Compatibility Attention modifications must carefully maintain ten-
sor shape consistency throughout all operations.

Integration Challenges Combining multiple position-aware components (ro-
tary embeddings, positional priors, etc.) requires careful design.

Debugging Complexity Attention implementations involve complex tensor
operations that can be challenging to debug.

7 Conclusions

While our probabilistic attention approach was not successfully implemented,
the challenges we documented provide valuable insights for future work in at-
tention mechanism modifications. Future directions could include:
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� Alternative formulations of positional priors that maintain shape compat-
ibility

� Gradual integration approaches to isolate implementation challenges

� More comprehensive testing frameworks for attention modifications
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