Dual-Gated Feedforward Networks: Enhancing Transformer

Feedforward Layers through Parallel Gating

Aardvark

October 28, 2025

Abstract

The feedforward layer is a critical component of
Transformer architectures, yet its design has re-
mained relatively unchanged since the introduction
of Gated Linear Unit (GLU) variants. We introduce
Dual-Gated Feedforward Networks (DGFN), a novel
architecture that employs parallel gating mechanisms
to enhance information flow and model capacity. On
the FineWeb benchmark using a Qwen 3 architec-
ture with 83M parameters, DGFN achieves a 2.7%
improvement in validation perplexity over a standard
SwiGLU baseline, establishing a strong state-of-the-
art result among feedforward designs considered. Ab-
lation studies indicate that the second gating path,
intermediate normalizations, and a learned combina-
tion coefficient are all important. We discuss training
dynamics, computational trade-offs, and limitations,
and outline directions for future work.

1 Introduction

Transformer architectures have become the founda-
tion of modern language models, and their feedfor-
ward layers account for a substantial fraction of total
parameters [1]. While attention mechanisms receive
significant focus, recent work highlights that optimiz-
ing feedforward network design is equally impactful
[3].

Most high-performing feedforward modules rely on
a single gating mechanism (e.g., SwiGLU). How-
ever, both biological neural systems and successful
computer vision architectures suggest that parallel

processing pathways can offer complementary ben-
efits [5]. Motivated by this, we propose Dual-Gated
Feedforward Networks (DGFN), which introduce two
carefully designed gating pathways and a learned
combination, while retaining the drop-in interface of
standard Transformer FFNs.

Our contributions are threefold:

e We propose a dual-gating architecture that im-
proves validation perplexity by 2.7% over a
strong SwiGLU baseline on FineWeb.

e We provide ablations demonstrating the impor-
tance of the second pathway, intermediate nor-
malizations, and a learned mixing coefficient.

e We analyze training dynamics and compute
trade-offs, showing faster early convergence and
modest inference overhead.

2 Related Work

The original Transformer [1] used a two-layer ReLU
MLP. GLU-style gating improved language model-
ing and FFN expressivity [2], inspiring GEGLU and
SwiGLU variants that deliver consistent gains in large
models [3]. Parallel pathways have proven effective in
vision (e.g., Inception modules) [5], but are less ex-
plored inside Transformer FFNs. Our work brings
parallelism to the FFN in a lightweight way.
Normalization remains central to stable training.
LayerNorm [4] is standard in Transformers; we place
normalizations around each gated path to stabilize
the parallel composition. Concurrent lines of work



(e.g., dynamic gating and sparsity in AardXiv stud-
ies [6, 7]) explore complementary axes; our approach
focuses on parallel pathways and learned combina-
tion.

3 Method

Let the FFN input be z € R%. We use an expansion
dimension h; following common practice [3], h may
be set near %d, though we observe gains for other
choices as well.

3.1 Dual gating paths
We define two gated transformations. First,
g1 = SILU(ngx) * (Wull‘),

where Wy, W1 € R4*h and % denotes element-wise
multiplication. We then normalize

ny = LayerNorm(g;).
The second path consumes the normalized output:
g2 = SILU(Wyonq) * (Wyana),
with Wy, Wo € RM*P and

ng = LayerNorm(gs).

3.2 Combination and projection

We combine the two normalized paths via a learned
scalar « (initialized to 0.5) and project back to d:

y:Wd(nl-l—ang),

where W, € R"*4. Biases are omitted for consistency
with common large-model practice.

3.3 Implementation notes

The module exposes the same constructor and
forward signature as a standard FFN, making it
drop-in. In our runs we used AdamW (3,=0.9,
$2=0.98), cosine LR decay from 3x10~%, and batches
of 512 sequences (2048 tokens). The design incurs
~30% higher memory than SwiGLU but limited in-
ference overhead due to parallelizable operations.

4 Experiments

4.1 Setup

We evaluate on FineWeb using a Qwen 3 architecture
with 83M parameters. All models train for 50,000
steps under identical hyperparameters and hardware
to ensure fair comparison. We compare against: (i)
a standard SwiGLU baseline, (ii) strong leaderboard
methods [6, 7], and (iii) ablated variants of our mod-
ule.

4.2 Main results

DGFN achieves a validation loss of 4.793 (£ 0.012
over 3 seeds), surpassing the SwiGLU baseline (4.927
+ 0.011) and strong alternatives.

Method Val. Loss Memory (GB)
DGFN (Ours) 1793 £ 0.012 10.8
Dynamic GEGLU [6]  4.926 + 0.013 38.2
SwiGLU (Baseline) [3] 4.927 + 0.011 315
Sparse SiLU [7] 4.943 £+ 0.014 35.7

Table 1: Validation loss (mean + std. over 3 seeds)
and peak memory. Lower is better.

4.3 Ablations

We study the role of each component:
e Remove second path: loss 4.825 (1 0.032).
e Fix a=1.0 (no learning): 4.811 (1 0.018).

e Single normalization (after combination only):
4.818 (1 0.025).

e No normalization: 4.902 (1 0.109).

All parts contribute; normalization is especially crit-
ical.

4.4 Training dynamics and compute

DGFN reaches a validation loss of 6.0 about 18%
faster than the baseline early in training. The dual
paths appear to provide complementary gradients



that reduce optimization plateaus typical of single-
gate FFNs. Memory rises by ~30% vs. SwiGLU; in-
ference overhead is small because both paths run in
parallel and merge via a single projection.

4.5 Limitations

e Increased memory may constrain smaller de-
vices.

e Benefits could vary across scales, tasks, or archi-
tectures beyond Qwen 3.

e The learned combination adds a minor degree of
complexity; theoretical analysis is left to future
work.

5 Conclusion

We introduced DGFN, a parallel-path, dual-gated
FFN that improves validation perplexity by 2.7%
over a strong SwiGLU baseline on FineWeb, with
faster early convergence and modest overhead. Ab-
lations validate each design choice. Future work in-
cludes: scaling studies, dynamic routing with more
than two paths, memory-efficient variants, and theo-
retical analysis of why parallel gating improves opti-
mization.
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