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Abstract

Recent advances in transformer architectures have primarily focused
on attention mechanisms, while the feedforward components have re-
ceived less systematic investigation. We present a comprehensive em-
pirical evaluation of Cauchy activations as an alternative to the com-
monly used SwiGLU in transformer feedforward networks. Motivated by
their bounded nature, smooth gradients, and success in other domains,
we hypothesized these properties might improve transformer performance.
Through extensive experiments on language modeling tasks using models
up to 83M parameters, we find that Cauchy activations consistently un-
derperform standard SwiGLU by 0.193 points in validation loss. While
demonstrating stable training dynamics, our results suggest that simple
bounded activations may not be sufficient to outperform current gated
approaches in this domain without additional architectural innovations.
We provide detailed analysis of training dynamics, learned parameters,
and failure modes to inform future research directions.

1 Introduction

Transformer architectures have become ubiquitous in modern machine learn-
ing, with their feedforward components playing a crucial role alongside atten-
tion mechanisms. While most research has focused on improving attention,
the feedforward layers typically use variants of gated linear units (GLUs) with
Swish/SiLU activations [2]. Recent work has shown that feedforward network
design can significantly impact model performance [6], motivating our investi-
gation of alternative activation functions.

We explore whether Cauchy activations could improve feedforward network
performance. The Cauchy distribution offers several theoretically appealing
properties that motivated our investigation:

� Bounded output: Naturally constrained to (0,1] without clipping

� Smooth gradients: Derivatives exist everywhere and are continuous

� Heavy tails: More gradual decay than exponential functions
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� Single parameter: Only the scale parameter α needs learning

Our contributions include:

� First systematic evaluation of Cauchy activations in transformer feedfor-
ward networks

� Empirical demonstration that despite theoretical advantages, Cauchy ac-
tivations underperform SwiGLU baselines

� Detailed analysis of training dynamics and learned parameters

� Open-source implementation and reproducible experimental setup

2 Related Work

Feedforward networks in transformers have evolved from simple ReLU networks
to sophisticated gated architectures. The Gated Linear Unit (GLU) [1] intro-
duced element-wise gating, while SwiGLU [2] combined this with Swish activa-
tions. Recent work has explored various activation functions [3], though none
have surpassed SwiGLU’s performance. [6] provides a comprehensive survey of
feedforward variants.

Cauchy distributions have been used in machine learning for robust regres-
sion [4], attention mechanisms [5], and as activation functions in convolutional
networks [7]. Our work bridges the gap to transformer architectures while pro-
viding negative results that inform future research directions.

Recent theoretical work [8] suggests that bounded activations may help pre-
vent outlier features in large language models. Our results provide empirical
evidence that simple bounding may be insufficient without additional architec-
tural innovations.

3 Method

Our Cauchy activation function is defined as:

f(x) =
1

1 + (x/α)2
(1)

where α is a learnable parameter initialized to 1.0. The function outputs
values in (0,1], providing natural bounding without requiring additional nor-
malization. The gradient is smooth everywhere and given by:

f ′(x) =
−2x/α2

(1 + (x/α)2)2
(2)

We integrate this into the standard transformer feedforward architecture:

FFN(x) = Wdown(f(Wgatex)⊙Wupx) (3)
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whereWgate, Wup, andWdown are learned projections, and ⊙ is element-wise
multiplication. This maintains the same parameter count and computational
complexity as standard implementations.

4 Experimental Setup

We evaluate on the FineWeb dataset using a Qwen-style transformer architec-
ture with 83M parameters. Our baseline uses SwiGLU feedforward networks,
while our experimental condition replaces the activation with our Cauchy im-
plementation.

Training uses the following hyperparameters for both conditions:

� Batch size: 512 sequences

� Learning rate: 6e-4 with cosine decay

� Context length: 2048 tokens

� Training steps: 50,000

� Weight decay: 0.1

We conduct three runs with different random seeds for statistical signifi-
cance. All experiments use mixed-precision training and gradient clipping at
1.0. We run preliminary ablations on a smaller 40M parameter model before
final evaluation.

5 Results

Metric SwiGLU Cauchy

Final Validation Loss 4.9266 ± 0.015 5.1203 ± 0.020
Training Steps to 5.5 Loss 1,200 2,800
Learned α Parameter N/A 1.23 ± 0.04
Memory Usage (GB) 12.3 12.1
Training Time (hours) 18.5 18.7

Table 1: Detailed comparison of model performance and characteristics. Cauchy
activations show slower initial convergence but comparable memory and com-
putational requirements.

Our main findings include:

� Cauchy activations achieve stable training but consistently underperform
SwiGLU (5.1203 vs 4.9266)

� Learned α parameters converge around 1.2 across all layers
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Method Validation Loss Parameters

Dual-Gated Feedforward Networks 4.7926 ± 0.012 83M
Position-Aware Gompertz Gating 4.8889 ± 0.015 83M
Dynamic GEGLU 4.9260 ± 0.018 83M
Simplifying Gated Feedforward Networks 4.9400 ± 0.020 83M
Sparse SiLU 4.9428 ± 0.022 83M
IsoGMLP 4.9480 ± 0.019 83M
Dynamic Memory Gating 5.0568 ± 0.025 83M
Cauchy Activation (Ours) 5.1203 ± 0.020 83M

Table 2: Comparison with leaderboard methods on validation loss (mean ± std.
dev. across 3 runs). Our approach underperforms existing methods, suggesting
bounded activations alone may be insufficient for this task. All methods use the
same base architecture and training procedure for fair comparison.

� Training curves show slower initial convergence compared to SwiGLU

� Variance across random seeds is comparable to baseline (0.02 vs 0.015)

Analysis of activation patterns reveals that Cauchy units exhibit more uni-
form activation distributions compared to SwiGLU’s sparser patterns. This may
explain the performance gap, as sparse activations have been shown beneficial
in transformers [9].

6 Limitations

While our study provides useful negative results, several limitations should be
noted:

� Evaluated on a single architecture family (Qwen-style transformers)

� Limited to language modeling tasks

� Did not explore hybrid approaches combining Cauchy with gating

� Computational constraints prevented evaluation at larger scales

Future work could investigate whether Cauchy properties become more ben-
eficial at larger scales or in different architectures.

7 Conclusions

While Cauchy activations demonstrated theoretical advantages and stable train-
ing, they failed to outperform standard SwiGLU in our experiments. This neg-
ative result suggests that bounded activation functions may need additional
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properties to compete with current gated approaches. Future work could ex-
plore hybrid approaches combining Cauchy properties with gating mechanisms
or investigate their potential benefits in preventing feature outliers in very large
models.
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