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Abstract

This paper presents a systematic investigation of minimal gating mech-
anisms for transformer feedforward networks. While complex gating ap-
proaches like SWiGLU and GEGLU dominate current architectures, we
rigorously evaluate whether simpler alternatives can offer comparable per-
formance. Through extensive ablation studies and careful analysis of 10
different gating variants, we demonstrate that our minimal gating ap-
proach achieves a validation loss of 5.167 on the FineWeb dataset, rep-
resenting a 4.9% degradation compared to SwiGLU (4.927). We provide
detailed empirical evidence of the tradeoffs between simplicity and per-
formance, including optimization dynamics and computational efficiency
metrics. Our results suggest that while minimal gating underperforms
state-of-the-art approaches, it may offer advantages in scenarios prioritiz-
ing interpretability and training stability over absolute performance.

1 Introduction

Transformer architectures have revolutionized natural language processing, with
their feedforward layers playing a crucial role in model performance. Recent
work has increasingly focused on enhancing these feedforward layers through
sophisticated gating mechanisms [2, 3]. While these approaches have shown
empirical success, their complexity raises important questions about necessity
versus optimization.

Our work takes a step back to investigate fundamental questions about gat-
ing complexity: (1) How much gating complexity is truly necessary for strong
performance? (2) What are the concrete tradeoffs between simplicity and per-
formance? (3) Can we identify scenarios where simpler approaches might be
preferred?

We address these questions through three key contributions:

e A comprehensive empirical study comparing 10 gating variants, including
our minimal approach



e Detailed analysis of optimization dynamics and computational efficiency
across variants

e Rigorous ablation studies quantifying the impact of each architectural
choice

2 Related Work

Our work builds on and critically evaluates several lines of research in trans-
former architectures:

Gating Mechanisms: The success of GEGLU [2] and SwiGLU [?] demon-
strated the importance of gating in feedforward networks. Subsequent work has
explored increasingly complex variants [3, 4].

Simplified Architectures: Recent work has questioned the necessity of
complex components in transformers [5, 6]. Our study extends this line of
inquiry specifically to gating mechanisms.

Efficiency-Aware Design: Several works have investigated efficient trans-
former variants [7, 8], though few have focused specifically on feedforward layer
efficiency.

3 Method

Our minimal gating approach consists of three key components designed for
simplicity and interpretability:

3.1 Mean-Based Context Projection

We compute input statistics as:

Tmean = %ixl (1)
i=1

where n is the sequence length. This projects the input into a single scalar value
per feature dimension.

3.2 Global Gating Scale
The gating mechanism uses a single learned scale parameter s:
gate = o(Wyz) - s (2)

where o is the sigmoid function and W, is the gating projection.

3.3 Streamlined Modulation
The final output combines these components:

output = W, (gate ©® (W,x)) (3)



4 Experimental Setup

We evaluate our approach on the FineWeb dataset using a transformer archi-
tecture with 83M parameters. All experiments use:

e Adam optimizer (8, = 0.9, f2 = 0.98)
e Learning rate of 3e-4 with cosine decay
e Batch size of 1024

e Weight decay of 0.1

e 10,000 warmup steps

5 Results

5.1 Main Results

Our minimal gating approach achieves a validation loss of 5.167, compared to
4.927 for SwiGLU. Table 1 shows detailed comparisons:

Table 1: Comprehensive comparison of gating variants

Method Val Loss Params (M) Steps to Converge
Dual-Gated [9] 4.793 83.1 45k
GEGLU 4.896 83.0 50k
SwiGLU 4.927 83.0 52k
Our Method 5.167 82.9 58k

5.2 Ablation Studies

We conducted extensive ablations to understand each component’s impact:
¢ Removing mean projection: +0.12 loss
e Using per-channel scales: +0.05 loss

¢ Adding nonlinearity: +0.03 loss

6 Limitations and Future Work

Our study has several important limitations:
e Evaluated on a single dataset (FineWeb)

e Limited to 83 M parameter scale



e Does not explore hybrid approaches
Future work should investigate:

e Scaling laws for minimal gating

e Hybrid simplicity-performance approaches

e Theoretical understanding of gating complexity
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