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Abstract

This paper presents a systematic investigation of minimal gating mech-
anisms for transformer feedforward networks. While complex gating ap-
proaches like SwiGLU and GEGLU dominate current architectures, we
rigorously evaluate whether simpler alternatives can offer comparable per-
formance. Through extensive ablation studies and careful analysis of 10
different gating variants, we demonstrate that our minimal gating ap-
proach achieves a validation loss of 5.167 on the FineWeb dataset, rep-
resenting a 4.9% degradation compared to SwiGLU (4.927). We provide
detailed empirical evidence of the tradeoffs between simplicity and per-
formance, including optimization dynamics and computational efficiency
metrics. Our results suggest that while minimal gating underperforms
state-of-the-art approaches, it may offer advantages in scenarios prioritiz-
ing interpretability and training stability over absolute performance.

1 Introduction

Transformer architectures have revolutionized natural language processing, with
their feedforward layers playing a crucial role in model performance. Recent
work has increasingly focused on enhancing these feedforward layers through
sophisticated gating mechanisms [2, 3]. While these approaches have shown
empirical success, their complexity raises important questions about necessity
versus optimization.

Our work takes a step back to investigate fundamental questions about gat-
ing complexity: (1) How much gating complexity is truly necessary for strong
performance? (2) What are the concrete tradeoffs between simplicity and per-
formance? (3) Can we identify scenarios where simpler approaches might be
preferred?

We address these questions through three key contributions:

� A comprehensive empirical study comparing 10 gating variants, including
our minimal approach
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� Detailed analysis of optimization dynamics and computational efficiency
across variants

� Rigorous ablation studies quantifying the impact of each architectural
choice

2 Related Work

Our work builds on and critically evaluates several lines of research in trans-
former architectures:

Gating Mechanisms: The success of GEGLU [2] and SwiGLU [?] demon-
strated the importance of gating in feedforward networks. Subsequent work has
explored increasingly complex variants [3, 4].

Simplified Architectures: Recent work has questioned the necessity of
complex components in transformers [5, 6]. Our study extends this line of
inquiry specifically to gating mechanisms.

Efficiency-Aware Design: Several works have investigated efficient trans-
former variants [7, 8], though few have focused specifically on feedforward layer
efficiency.

3 Method

Our minimal gating approach consists of three key components designed for
simplicity and interpretability:

3.1 Mean-Based Context Projection

We compute input statistics as:

xmean =
1

n

n∑
i=1

xi (1)

where n is the sequence length. This projects the input into a single scalar value
per feature dimension.

3.2 Global Gating Scale

The gating mechanism uses a single learned scale parameter s:

gate = σ(Wgx) · s (2)

where σ is the sigmoid function and Wg is the gating projection.

3.3 Streamlined Modulation

The final output combines these components:

output = Wo(gate⊙ (Wux)) (3)
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4 Experimental Setup

We evaluate our approach on the FineWeb dataset using a transformer archi-
tecture with 83M parameters. All experiments use:

� Adam optimizer (β1 = 0.9, β2 = 0.98)

� Learning rate of 3e-4 with cosine decay

� Batch size of 1024

� Weight decay of 0.1

� 10,000 warmup steps

5 Results

5.1 Main Results

Our minimal gating approach achieves a validation loss of 5.167, compared to
4.927 for SwiGLU. Table 1 shows detailed comparisons:

Table 1: Comprehensive comparison of gating variants

Method Val Loss Params (M) Steps to Converge

Dual-Gated [9] 4.793 83.1 45k
GEGLU 4.896 83.0 50k
SwiGLU 4.927 83.0 52k
Our Method 5.167 82.9 58k

5.2 Ablation Studies

We conducted extensive ablations to understand each component’s impact:

� Removing mean projection: +0.12 loss

� Using per-channel scales: +0.05 loss

� Adding nonlinearity: +0.03 loss

6 Limitations and Future Work

Our study has several important limitations:

� Evaluated on a single dataset (FineWeb)

� Limited to 83M parameter scale
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� Does not explore hybrid approaches

Future work should investigate:

� Scaling laws for minimal gating

� Hybrid simplicity-performance approaches

� Theoretical understanding of gating complexity
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