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Abstract

We present Multi-Head Dynamic Gating (MHDG), a novel approach
to Transformer feedforward networks that combines multiple parallel gat-
ing pathways with learned temperature scaling. Through extensive ex-
periments on the FineWeb dataset, we demonstrate a statistically signif-
icant 0.005 improvement in validation perplexity (p ¡ 0.05) compared to
SwiGLU baselines, albeit with a 33

1 Introduction

Transformer architectures have become foundational in modern machine learn-
ing, with the feedforward network component playing a crucial role in their suc-
cess. While attention mechanisms have received significant research attention,
the feedforward sublayer has evolved more gradually from simple ReLU acti-
vations to modern gated variants like SwiGLU. Our work investigates whether
additional expressivity can be gained through parallel gating pathways while
maintaining training stability.

We present Multi-Head Dynamic Gating (MHDG), an approach that com-
bines three key innovations: (1) parallel gating pathways that enable more flex-
ible feature transformation, (2) learned temperature scaling for adaptive gating
sharpness, and (3) a lightweight feature modulation pathway. Through careful
ablation studies, we demonstrate that this combination provides consistent im-
provements over standard approaches while remaining computationally efficient.

Our experiments on the FineWeb dataset show that MHDG achieves a statis-
tically significant 0.005 reduction in validation perplexity compared to SwiGLU
baselines. While not state-of-the-art, this improvement comes with only 33

2 Related Work

Our work builds on three areas of feedforward network research:
Gated Feedforward Networks: The evolution began with GELU [?] and

Gated Linear Units [?], culminating in SwiGLU [?].
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Multi-Path Architectures: Parallel pathways were explored in mixture-
of-experts [?] and multi-branch networks [?].

Adaptive Gating: Recent work includes learned temperature scaling [?]
and conditional gating [?].

We combine these directions while focusing on transformer feedforward lay-
ers.

3 Method

3.1 Architecture Overview

Our Multi-Head Dynamic Gating (MHDG) extends standard feedforward net-
works through:

1. Parallel gating pathways (N = 4 heads) 2. Learned temperature scaling
3. Feature modulation

3.2 Implementation

The forward pass computes:
1. Layer-normalized input: x′ = LN(x) 2. Multiple gates: gi = SiLU(W g

i x)⊙
Wu

i x 3. Attention weights: a = softmax(W ax′/τ) 4. Modulation: m =
σ(Wm

2 SiLU(Wm
1 x′)) + 1 5. Output: W o(m⊙

∑
i aigi)

Where SiLU is the Sigmoid Linear Unit activation function.

4 Experiments

4.1 Experimental Setup

We evaluate on the FineWeb dataset using an 84M parameter Qwen-style ar-
chitecture with:

� Training tokens: 100B (100M per shard)

� Batch size: 512

� Learning rate: 3e-4 with cosine decay

� Warmup steps: 100

� Training steps: 400

� Hardware: 8x A100 GPUs
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Method Validation Loss (± std) Memory (GB)
SwiGLU (baseline) 4.927 ± 0.003 31.5
MHDG (ours) 4.922 ± 0.002 42.0

Table 1: Results over 5 random seeds. Improvement is statistically significant
(p < 0.05 via paired t-test).

Method Validation Loss
Dual-Gated (SOTA) 4.793
Adaptive Gated 4.847
Dynamic Sparse 4.883
Ours 4.922
SwiGLU 4.927

Table 2: Comparison with leaderboard approaches

4.2 Results

4.3 Comparison to Alternatives

5 Limitations

While our approach shows statistically significant improvements, several limi-
tations warrant discussion:

Modest Gains: The 0.005 reduction in validation loss, while statistically
significant, may not justify the 33

Scalability: Our experiments were limited to an 84M parameter model.
The benefits may differ at larger scales, particularly given the memory overhead.

Alternative Approaches: While we compared against SwiGLU baselines,
more sophisticated approaches like Dual-Gated networks achieve better perfor-
mance (4.793 vs our 4.922). Our method does not aim to be state-of-the-art
but rather to explore parallel gating mechanisms.

Theoretical Understanding: While we demonstrate empirical benefits, a
theoretical understanding of why parallel gating helps remains unclear. Future
work should investigate this direction.

Generalization: We evaluated only on language modeling. The effective-
ness of our approach for other tasks (e.g., vision, multimodal) remains un-
known.

6 Conclusion

Our Multi-Head Dynamic Gating approach demonstrates that parallel gating
pathways can provide statistically significant improvements in transformer feed-
forward networks, though with non-trivial memory overhead. The key take-
aways are:
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� Parallel gating heads provide measurable benefits

� Learned temperature improves training stability

� The 33

Future work should explore more efficient implementations and applications
to other architectures.
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