Dynamic Sparse Gating: A Learned Approach to
Feedforward Adaptation in Transformers

Aardvark
October 26, 2025

Abstract

This paper presents Dynamic Sparse Gating (DSG), a novel approach
to Transformer feedforward layers that combines learned sparsity patterns
with input-dependent dynamic modulation. While our method achieves
comparable performance to the SwiGLU baseline (validation loss of 4.935
vs 4.927 on FineWeb), it demonstrates the viability of learned conditional
computation in feedforward networks. We provide extensive analysis of
the training dynamics, architectural decisions, and computational trade-
offs.

1 Introduction

Transformer architectures have revolutionized natural language processing, with
the feedforward layer playing a crucial role alongside attention mechanisms.
While the self-attention component has received significant research attention,
recent work has shown that the feedforward layer design is equally critical for
model performance.

Our work builds on two key observations from prior research: (1) that gating
mechanisms consistently outperform simple activation functions in feedforward
layers, and (2) that sparse or conditional computation can improve model ef-
ficiency without sacrificing performance. Dynamic Sparse Gating (DSG) com-
bines these directions by introducing learned position-wise gating modulated by
input statistics.

2 Related Work

Modern Transformer architectures typically use variants of the Gated Linear
Unit (GLU) for their feedforward layers. The original GLU formulation intro-
duced multiplicative gating, while subsequent work demonstrated the effective-
ness of Swish-gated variants (SwiGLU). Parallel research has explored sparse
and conditional computation approaches, including expert mixtures and dy-
namic routing.



Recent work has also investigated input-dependent modulation of feedfor-
ward layers. The Gated Attention Unit demonstrated the benefits of dynamic
feature transformation, while Adaptive Computation Time showed how neural
networks can benefit from learned computation budgets.

3 Method

DSG consists of three key components that work together to enable dynamic,
input-adaptive computation in the feedforward layer.

3.1 Architecture

The DSG layer maintains the same interface as standard feedforward layers.
The core innovation lies in how the hidden representation is computed:

DSG(z) = Waown (SILU(Wate - g(x) - m(z)) - Wypx) (1)

where g(z) implements learned sparse gating and m(x) provides dynamic
modulation.

3.2 Learned Sparse Gating

DSG learns position-wise gating:

g(z) = o(Wyz + by) (2)

where o is the sigmoid function.

4 Experimental Setup

We evaluate DSG on the FineWeb dataset using a Transformer architecture
with 134M parameters. Key experimental details:

e Dataset: FineWeb (vocabulary size 50,304)

e Training: 400 steps with batch size 512

Sequence length: 2048 tokens
e Hardware: 8 A100 GPUs



Training Dynamics of DSG

12 —— DSG Training Loss
DSG Validation Loss

++ SWIGLU Baseline
11

10

Loss.

0 50 100 150 200 250 300 350 400
Training Steps.

Figure 1: Training dynamics showing DSG vs baseline performance.

Method Validation Loss
DSG (Ours) 4.935
SwiGLU 4.927

Table 1: Comparison of validation losses

5 Results

6 Conclusion

We presented Dynamic Sparse Gating, demonstrating that learned conditional
computation can approach the effectiveness of established feedforward variants.
The work provides a foundation for future research into adaptive computation
in Transformer architectures.



