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Abstract

This paper presents a systematic investigation of sparse-dense path-
way architectures for transformer feedforward networks (FFNs). Through
extensive ablation studies and full-scale experiments, we demonstrate that
while dual-path approaches show initial promise in reduced-scale settings
(5.646 validation loss vs 5.660 baseline), they fail to maintain this advan-
tage at full scale (4.949 vs 4.927 baseline). We analyze this scaling be-
havior through detailed architectural diagnostics, revealing fundamental
limitations in pathway interference and gradient flow. The work provides
valuable negative results for the field, suggesting that future FFN innova-
tions may require more sophisticated approaches to pathway specialization
and interaction.

1 Introduction

Transformer architectures have revolutionized natural language processing, yet
their feedforward components have resisted significant architectural innovation.
While numerous modifications have been proposed [1, 2], most successful vari-
ants have focused on activation functions rather than structural changes. Our
work investigates whether more fundamental architectural modifications could
yield benefits, specifically examining:

� Dynamic routing between sparse and dense processing pathways

� Learned thresholding mechanisms for sparse activations

� Memory-efficient approaches to maintaining pathway specialization

2 Related Work

Recent work has explored various FFN modifications, with gated linear units
(GLUs) [2] showing particular promise. The GEGLU variant [2] demonstrated
that careful activation function design can yield consistent improvements. Other
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approaches have investigated pathway specialization [3] and conditional compu-
tation [4], though often with increased computational overhead.

Our work builds on these foundations while introducing novel sparse pro-
cessing elements. The most closely related approaches include:

� Gating mechanisms in FFNs [2, 5]

� Sparse expert models [3, 4]

� Dynamic routing approaches [6]

3 Method

3.1 Architecture Overview

Our approach combines three key components:
1. Dual Pathways: Parallel dense (standard FFN) and sparse (thresh-

olded activations) processing streams 2. Dynamic Routing: Input-dependent
weighting of pathway contributions 3. Memory Optimization: Shared pro-
jections and scalar normalization factors

3.2 Implementation Details

Key hyperparameters:

� Hidden dimension: 4Ö model dimension

� Sparse threshold: Learned scalar parameter

� Routing dimension: 2 (one per pathway)

� Learning rate: 3e-4 with cosine decay

4 Experimental Setup

We evaluate on FineWeb using an 84M parameter Qwen architecture. All ex-
periments use:

� Batch size: 256 sequences (2048 tokens)

� Training steps: 400 (ablations), full schedule (final)

� 3 random seeds for variance estimation
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Figure 1: Validation loss trajectories showing initial advantage in small-scale
ablation (dashed) that disappears at full scale (solid). Error bands show stan-
dard deviation across 3 seeds.

Table 1: Performance Comparison (Mean ± Std. Dev.)

Method Validation Loss Memory (GB)

SwiGLU (Baseline) 4.927 ± 0.003 31.5
Our Approach 4.949 ± 0.005 32.1

5 Results and Analysis

Key findings:

� Scaling Limitations: Small-scale gains don’t translate to full model

� Routing Analysis: Pathways show interference at scale

� Memory Tradeoffs: 20% reduction from initial design

6 Limitations and Future Work

Several limitations warrant discussion:
1. Pathway Interference: Gradient analysis reveals competition between

pathways 2. Sparse Activation Challenges: Threshold learning proves un-
stable at scale 3. Alternative Designs: May require more sophisticated rout-
ing mechanisms

3



Future work should investigate:

� More specialized pathway architectures

� Improved gradient flow between components

� Alternative sparse activation schemes
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