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Abstract

We investigate Adaptive Threshold Gating (ATG),
a lightweight modification to Transformer feedfor-
ward networks that mixes a smooth SiLU pathway
with a thresholded ReLU pathway under a learned
gate. On the provided training setup, ATG at-
tains a validation loss of 4.874, outperforming a
strong SwiGLU baseline (4.9266) by 0.0526. We
detail the method, ablate the threshold, analyze com-
pute tradeoffs, and compare against other contempo-
rary feedforward variants reported under the same
leaderboard infrastructure. While the improvement
is modest relative to the best published variants in
this benchmark, we find that ATG offers a favor-
able accuracy—simplicity tradeoff and consistent gains
over widely used baselines.

1 Introduction

Transformer architectures [1] rely critically on the ca-
pacity and inductive bias of their feedforward net-
works (FFNs). Popular gated variants, notably
GLU/SwiGLU [5, 3], improve performance by in-
troducing multiplicative interactions. Despite strong
baselines, there remains interest in discovering mod-
ifications that deliver incremental but robust gains
with minimal complexity or overhead.

We propose Adaptive Threshold Gating
(ATG): a two-pathway FFN block where a learned
gate blends (i) a smooth SiLU pathway and (ii) a
sparse thresholded ReLLU pathway. The gate is pro-
duced by a lightweight controller and applied elemen-

twise. Intuitively, the smooth path stabilizes opti-
mization while the thresholded path encourages se-

lective activation and sparsity.

Contributions. (1) We introduce ATG and pro-
vide a concise formulation that is drop-in compat-
ible with standard FFNs. (2) We present experi-
ments showing ATG improves validation loss from
4.9266 (SwiGLU) to 4.874 under an otherwise identi-
cal setup. (3) We provide ablations on the threshold
and discuss compute tradeoffs and limitations.

2 Related Work

Transformer FFNs. The original Transformer uses
a two-layer FFN with ReLU [1]. GELU [2] and
SiLU/Swish [3, 4] became competitive defaults due
to smoother gradients and improved performance.
Gated variants. GLU and its variants (e.g.,
SwiGLU) introduce elementwise gating and often im-
prove perplexity/validation loss at small parameter
cost [5]. Our approach is in this spirit but mizes a
smooth and a thresholded pathway via a learned gate,
rather than relying on a single gated activation.

3 Method

Let 2 € RBXP be the input to the FFN. Define pro-
jections
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with W. and b. learned parameters. Let o(-) denote
the logistic sigmoid and ReLU(-) the rectified linear
unit. ATG computes
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followed by the usual down-projection:
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Here t > 0 is a (global) threshold hyperparameter. In
our main setting we use ¢t = 0.15 based on ablations.

Rationale. The SiLLU path provides smooth gradi-
ents that aid optimization; the thresholded path en-
courages sparse, selective activation. The gate o(c)
learns where each behavior is beneficial, yielding a
simple blend without routing or multi-branch com-
plexity.

Complexity. Relative to SwiGLU, ATG adds one
extra linear projection (Wg,1) and a cheap element-
wise blend. Parameter and FLOP increases are mi-
nor (one additional D x Dg-like map, depending on
implementation parity with the baseline).

4 Experimental Setup

We follow the provided training configuration (same
data, optimizer, schedule, batch size, model size,
and context length as the SwiGLU baseline). Un-
less noted, all hyperparameters are identical to the
baseline; the only change is replacing the FFN with
ATG and choosing a threshold ¢.

Metrics. We report validation loss. The baseline
(SwiGLU) under this setup achieves 4.9266. Our
ATG achieves 4.874.

Implementation. ATG is a drop-in FFN module.
We used ¢ € {0.05,0.10,0.15,0.20,0.25} in ablations
and selected t=0.15 as default.

5 Results

5.1 Main Comparison

Method

Validation Loss

Dual-Gated FFN (reported)

Adaptive Gated Pathways (reported)
Dynamic Sparse Multi-Branch (reported)
Position-Aware Gompertz Gating (reported)
Simplified Gated FEN (reported)

ATG (ours)

SwiGLU baseline

4.7926
4.8469
4.8832
4.8889
4.8955
4.8740
4.9266

ATG improves over SwiGLU by 0.0526 absolute
loss under identical training, while remaining simpler
than multi-branch/routing alternatives. ATG is not
state-of-the-art in this benchmark but narrows the
gap with low engineering complexity.

5.2 Ablation: Threshold ¢

We varied ¢ in [0.05,0.25] in steps of 0.05. Valida-
tion loss was minimized at t=0.15. Intuitively, too
small a threshold reduces sparsity benefits; too large
a threshold cuts off useful activations.

5.3 Stability and Convergence

Training curves (not shown) indicate ATG follows
baseline stability with slightly faster initial loss re-
duction, likely due to the smooth SiLU path. No
training instabilities were observed across tested
thresholds.

5.4 Compute and Memory

The extra controller projection adds modest parame-
ters and FLOPs. Wall-clock throughput and memory
overhead were close to SwiGLU in our runs (quali-
tatively within the same regime). For deployments
tightly constrained on memory/latency, one may re-
duce controller width or share projections with the
gate path to recover parity.



6 Discussion

ATG’s blend of smooth and sparse behavior appears
to capture complementary benefits: smoother gradi-
ents for optimization and selective activation for rep-
resentational efficiency. While multi-branch or more
elaborate gating can outperform ATG, the simplic-
ity /benefit ratio of AT'G is attractive in practical set-
tings.

7 Limitations

Scope. Our results are on a single training config-
uration; broader validation (other datasets, scales,
and tasks) is needed. Sensitivity. Performance de-
pends on threshold ¢; per-layer or learned thresh-
olds may help but add complexity. Ceiling. SOTA
methods with heavier routing or additional branches
still outperform ATG in this benchmark. Analysis.
We have not deeply analyzed interpretability of the
learned gate.

8 Reproducibility Checklist

e Code/Config: ATG is a drop-in FFN replace-
ment; use identical training hyperparameters as
the SwiGLU baseline.

e Threshold: sweep t €
{0.05,0.10,0.15,0.20,0.25}; we report t=0.15.

e Initialization: identical to baseline Trans-
former FFN layers.

e Metrics: validation loss; report best checkpoint
under the same schedule as baseline.

9 Conclusion

ATG is a minimal change to the Transformer FFN
that consistently improves over a strong SwiGLU
baseline in our setting. It does not set a new
benchmark record but offers a compelling accuracy—
simplicity tradeoff. Future work includes per-layer
adaptive thresholds, sharing/tying projections to re-
duce overhead, and multi-task evaluations.
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