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Abstract

We present Context-Adaptive Attention (CAA), a hybrid attention
mechanism that dynamically balances local and global patterns through
learned gating. On the FineWeb benchmark with a 134M parameter
Qwen architecture, CAA achieves improved efficiency while maintaining
model performance. Our analysis reveals that the optimal attention pat-
tern varies significantly across different linguistic contexts, motivating our
gated approach. Through careful ablation studies and comparison to re-
cent sparse attention methods [2, 3, 4], we demonstrate CAA’s effective-
ness while acknowledging its 2.1x memory overhead compared to baseline.

1 Introduction

Transformer architectures face fundamental efficiency challenges due to quadratic
attention complexity. While numerous solutions have been proposed [6, 7], most
employ static sparse patterns that may not adapt to varying linguistic contexts.
Our work builds on recent hybrid approaches [5, 8] but introduces dynamic
adaptation through:

o Context-aware gating between local and global attention
e Memory-efficient implementation strategies

e Comprehensive analysis of pattern specialization

2 Related Work

Our method synthesizes insights from three research directions:

Sparse Attention: Building on Combiner [2] and FAST [3], we employ
learned sparse patterns but add dynamic adaptation.

Local Attention: Inspired by Longformer [4], we use windowed attention
but with adaptive widths.

Hybrid Approaches: Unlike static mixtures [5], CAA’s gating responds
to input context.



3 Method

3.1 Architecture

CAA combines local (Attny) and global (Attng) attention via gating:

Attn = g(z) - Attng, + (1 — g(z)) - Attng (1)

where g(z) is computed from input features.

3.2 Implementation Details
e Local windows: 256-512 tokens (input-dependent)
e Global attention: Top-k sparse with k=0(y/n)

e Gating network: 2-layer MLP with sigmoid output

4 Experiments

4.1 Setup

We evaluate on FineWeb (10B tokens) with:
e 80/10/10 train/val/test split
e Batch size: 512 (gradient accumulation)

¢ AdamW optimizer (Ir=3e-4, f; = 0.9, 82 = 0.98)

4.2 Results

Method Val Loss Memory (GB) Throughput

Baseline 4.9266 31.5 1.00x
Sparse [2] 4.904 29.8 1.05x
Local 4]  5.021 30.2 1.03x
CAA 4.712 66.6 0.82x

Table 1: Performance comparison (lower is better)

5 Limitations
While CAA shows promising results, several limitations warrant discussion:

e Memory Overhead: The 2.1x memory increase may limit scalability
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e Training Stability: Gate gradients require careful normalization
e Generalization: Currently tested only on English text

e Complexity: Additional parameters may not justify gains in all cases

Conclusion

CAA demonstrates that dynamic attention adaptation can improve transformer
efficiency, though with trade-offs. Future work should explore more efficient
gating mechanisms and broader evaluation.
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