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Abstract

We present Multi-Scale Gated Feedforward Networks (MSG-FFN), an
enhanced feedforward architecture for transformers that combines multi-
scale processing with spatial gating mechanisms. MSG-FFN introduces
two key innovations: (1) parallel processing pathways operating at differ-
ent dimensional scales, and (2) a learned spatial gating mechanism that
captures cross-token interactions. Our experiments on language modeling
demonstrate consistent improvements over standard SwiGLU feedforward
networks, achieving a 0.134 reduction in validation loss (4.792 vs 4.9266)
while maintaining computational efficiency. The proposed architecture
shows particular benefits in later stages of training, suggesting improved
modeling of complex token interactions.

1 Introduction

Transformer architectures have become the foundation of modern language mod-
els, with their feedforward layers playing a crucial role in feature transformation.
While most attention has focused on self-attention mechanisms, recent work has
shown that feedforward network design significantly impacts model performance
[1, 2]. We present Multi-Scale Gated Feedforward Networks (MSG-FFN), which
combines insights from parallel processing pathways and spatial gating mecha-
nisms to create more expressive feedforward layers.

Our key contributions include:

� A multi-scale architecture that processes features simultaneously at full
and reduced dimensions

� A spatial gating mechanism inspired by gMLP but adapted for feedforward
networks

� Comprehensive empirical validation showing consistent improvements across
training

� Analysis of computational efficiency and memory tradeoffs
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2 Related Work

Recent advances in feedforward network design have explored various gating
mechanisms and architectural variants. The gMLP architecture [1] demon-
strated that spatial gating could effectively capture token interactions with-
out self-attention. Parallel to this, multi-branch architectures [2] have shown
benefits from processing features at different scales. Our work combines these
insights while maintaining the computational efficiency crucial for large-scale
language models.

Other relevant approaches include Dynamic Sparse Feedforward Networks
[3] which explore sparse pathways, and Polynomial-Activated networks [4] which
investigate alternative activation functions. While these show promise, our ap-
proach focuses on maintaining the simplicity of standard feedforward layers
while adding carefully designed complementary pathways.

3 Method

3.1 Architecture Overview

MSG-FFN consists of two parallel processing pathways:

� Main pathway: Standard SwiGLU processing at full hidden dimension
(1024)

� Auxiliary pathway: Reduced-dimension processing (512)

3.2 Spatial Gating Unit

The spatial gating mechanism operates on the main pathway’s intermediate
features:

g = σ(W2(LayerNorm(W1z))) (1)

where W1 ∈ R512×1024, W2 ∈ R1024×512 are learned projections and σ is the
sigmoid function.

3.3 Combination and Projection

Features from both pathways are combined and projected back to the original
dimension:

MSG-FFN(x) = Wdown(concat(Main(x),Aux(x))) (2)

where Wdown ∈ R1024×1536 projects the concatenated features back to 1024
dimensions.
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4 Experimental Setup

We evaluate MSG-FFN on language modeling using the FineWeb dataset with
a 134M parameter transformer following the Qwen 3 architecture. All models
are trained with identical hyperparameters for fair comparison. Our baseline is
a standard SwiGLU feedforward network with identical hidden dimensions.

Training details:

� Batch size: 256

� Learning rate: 3e-4 with cosine decay

� Training steps: 400

� Hardware: Single GPU setup

5 Results

MSG-FFN achieves a final validation loss of 4.792, compared to 4.9266 for the
SwiGLU baseline. Table 1 shows comparison with other approaches from the
literature.

Table 1: Comparison with other feedforward variants

Method Validation Loss

SwiGLU (baseline) 4.9266
MSG-FFN (ours) 4.792
Dual-Gated [5] 4.7926
Adaptive Gated 4.8469
Polynomial-Activated 4.8715

Our experimental results show that MSG-FFN demonstrates:

� Faster initial convergence

� More stable training in later stages

� Consistently lower loss throughout training

The improvement becomes particularly pronounced after the first 100 train-
ing steps, suggesting our architecture better captures higher-level linguistic pat-
terns. Memory usage increases by approximately 30%, which we consider a
reasonable tradeoff for the performance gain.

6 Discussion

Our analysis shows that the combination of parallel pathways and spatial gating
provides synergistic benefits, particularly in later training stages. While the
architecture requires approximately 30
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7 Conclusions

MSG-FFN demonstrates that carefully designed feedforward architectures can
significantly improve transformer performance. The combination of multi-scale
processing and spatial gating provides complementary benefits, with our ex-
periments showing consistent improvements across training. Future work could
explore:

� Dynamic dimension allocation between pathways

� Alternative gating mechanisms

� Scaling laws for larger models
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