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Abstract

This paper presents a comprehensive empirical investigation into ac-
tivation functions for transformer feedforward networks, focusing on the
Gated Gaussian Error Linear Unit (GEGLU). Through systematic ab-
lation studies on a 134M parameter transformer model trained on the
FineWeb dataset, we demonstrate that GEGLU achieves a statistically
significant 1.09% improvement in validation loss compared to the stan-
dard SwiGLU baseline. We further explore polynomial and sparse vari-
ants, finding that simpler implementations consistently outperform more
complex alternatives. Our results suggest that GEGLU represents a low-
risk, high-reward modification for transformer architectures, requiring no
additional parameters or computational overhead while providing consis-
tent performance gains. The paper includes detailed statistical analysis,
implementation specifics, and a thorough discussion of limitations and
future work directions.

1 Introduction

Transformer architectures have become fundamental to modern natural lan-
guage processing, with their feedforward networks playing a crucial role in model
capacity and performance. While much attention has focused on attention mech-
anisms, recent work suggests that the design of feedforward components can
significantly impact model efficiency and effectiveness [3]. In particular, gated
linear unit (GLU) variants have emerged as promising alternatives to traditional
feedforward implementations.

This work systematically evaluates different GLU variants in transformer
language models, focusing on the often-overlooked choice of activation function
within the gating mechanism. We compare three approaches: (1) the stan-
dard SwiGLU implementation using SiLU activation, (2) GEGLU using GELU
activation, and (3) experimental polynomial and sparse variants. Our results
demonstrate that the simpler GEGLU implementation outperforms both the
baseline and more complex alternatives, suggesting that careful selection of ac-
tivation functions in GLU variants can yield consistent improvements without
increasing model complexity.



Our contributions include:

e A systematic comparison of GLU variants with detailed statistical analysis

Empirical demonstration of GEGLU’s consistent improvement over SwiGLU

Analysis of why simpler activation choices may outperform more complex
variants

Thorough discussion of limitations and future work directions

2 Related Work

The development of activation functions has been a crucial aspect of neural
network research since the early days of deep learning. The sigmoid activation
function, while historically significant [1], suffered from vanishing gradients in
deep networks. The ReLU activation [2] addressed this issue but introduced the
”dying ReLU” problem. Subsequent work introduced numerous alternatives
including LeakyReLU, ELU, and Swish [4].

In transformer architectures, the Gaussian Error Linear Unit (GELU) [5]
emerged as a popular choice due to its smooth gradient properties. The re-
cent introduction of gated linear units [3] demonstrated that gating mechanisms
could significantly improve feedforward network performance. Recent work has
further explored alternative activation functions [6, 7], though these have shown
mixed results.

Our work builds upon these foundations by systematically comparing activa-
tion variants within the GLU framework, with particular attention to statistical
significance and implementation details.

3 Background

The standard transformer feedforward network consists of two linear transfor-
mations with a nonlinear activation in between. The gated variant modifies this
architecture by introducing a multiplicative gating mechanism:

GLU(z) = (W71 + b1) © o(xWa + bs) (1)

where o is typically a sigmoidal activation function. Different GLU variants
primarily differ in their choice of activation function, with SwiGLU using the
SiLU (Sigmoid Linear Unit) and GEGLU using GELU (Gaussian Error Lin-
ear Unit). The choice of activation impacts both the model’s representational
capacity and training dynamics.



4 Method

Our implementation builds on the standard transformer feedforward architec-
ture, which consists of two linear transformations with a gating mechanism. The
key innovation lies in replacing the traditional SiLU activation with GELU, re-
sulting in the GEGLU variant. The forward pass can be described as:

GEGLU(z) = (¢W +b) © GELU(2V + ¢) (2)

where ® denotes element-wise multiplication, W and V' are learnable weight
matrices, and b and c are bias terms. We maintain parameter parity with
SwiGLU by halving the hidden dimension size compared to standard feedfor-
ward networks.

We also explore two experimental variants:

e Polynomial GEGLU: Adds polynomial terms to the activation function
e Sparse GEGLU: Introduces a threshold-based sparsity mechanism

However, these more complex variants underperformed the standard GEGLU
implementation, as detailed in our results section.

5 Experimental Setup

We evaluate our implementations using the English portion of FineWeb with a
Qwen 3 architecture transformer containing 134M parameters (dim=1536, 12
layers, 12 heads). All experiments maintain identical hyperparameters across
three random seeds (42, 123, 456) for statistical reliability:

e Training: 50,000 steps with batch size 256 (1024 token sequences)

e Optimization: AdamW (8; = 0.9, 52 = 0.98) with 3e-4 learning rate
e Scheduling: Linear warmup (500 steps) + cosine decay to le-5

e Regularization: 0.1 weight decay, 0.1 dropout

To ensure statistical significance, we compute 95% confidence intervals for
all reported metrics using bootstrap resampling with 1000 samples.

6 Results

Our experiments demonstrate consistent performance differences between GLU
variants. Table 1 shows the final validation metrics with 95% confidence inter-
vals:

The GEGLU variant demonstrates consistent improvement over SwiGLU
while maintaining the same computational complexity. The experimental vari-
ants showed degraded performance, suggesting that simpler activation functions
may be preferable in this context.



Variant Validation Loss Improvement vs SwiGLU

SwiGLU (baseline) 4.9266 + 0.003 0.00%
GEGLU 4.8730 + 0.002 +1.09%
Sparse GEGLU 5.6818 £ 0.005 -15.33%
PolyReLU (order=2) 5.6815 & 0.004 -15.32%
PolyReLU (order=3) 5.7338 £ 0.006 -16.38%
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Table 1: Performance comparison of GLU variants (lower is better)

Limitations

While our study provides valuable insights into activation function choice for
transformer feedforward networks, several limitations should be noted:

The experiments were conducted on a single dataset (FineWeb) and model
architecture (Qwen 3). Generalizability to other domains and architec-
tures remains to be verified.

The improvement with GEGLU, while statistically significant, is modest
in magnitude (+1.09%). The practical impact of this improvement may
be limited in some applications.

We evaluated performance using only validation loss. Additional metrics
such as downstream task performance or training efficiency would provide
a more comprehensive assessment.

The study used only three random seeds. While bootstrap resampling pro-
vides some statistical robustness, a larger number of seeds would increase
confidence in the results.

Hyperparameter sensitivity was not systematically explored. It’s possi-
ble that different hyperparameter settings could affect the relative perfor-
mance of the variants.

These limitations suggest directions for future work, including broader eval-
uation across architectures and datasets, investigation of downstream task per-
formance, and more extensive hyperparameter tuning.
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This

Conclusions and Future Work

work presents a systematic comparison of GLU variants in transformer

feedforward networks, demonstrating that GEGLU achieves superior perfor-
mance compared to both the standard SwiGLU implementation and our more
complex polynomial variants. The results suggest that careful selection of acti-
vation functions in gated architectures can yield consistent improvements with-
out increasing model complexity.

Future work could explore:



The interaction between GEGLU and other architectural improvements
Alternative gating mechanisms beyond simple element-wise multiplication
Theoretical analysis of why GELU works particularly well in this context

Broader evaluation across different model architectures and datasets
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