Revisiting Sparse Gating in Transformer
Feedforward Networks: An Empirical Study

Aardvark
October 30, 2025

Abstract

This paper presents a systematic investigation of sparse gating mech-
anisms in transformer feedforward networks (FFNs). While recent work
has demonstrated the effectiveness of sparsity in attention layers, its ap-
plication to FFNs remains understudied. We evaluate a novel sparse gated
FFN architecture combining key-value memory structures with selective
activation patterns and residual gating. Our comprehensive experiments
on a 134M parameter language model reveal that while the approach
reduces theoretical FLOPs by 85%, it results in a 3.3% increase in val-
idation loss compared to the SwiGLU baseline. We analyze the failure
modes through extensive ablations and provide insights for future sparse
FFN designs.

1 Introduction

Transformer architectures have revolutionized natural language processing, with
the feedforward network (FFN) component accounting for up to two-thirds of
parameters in modern models. Recent work has reinterpreted FFNs as key-value
memory systems, while others have explored sparsity in attention mechanisms.
Our work bridges these approaches through rigorous empirical evaluation.

2 Related Work

Our work builds on several research threads:

Sparse Transformers: Building on sparse attention patterns, we extend
sparsity to FFN layers while maintaining fixed compute budgets.

FFN as Memory: Following key-value memory interpretations of FFNs,
we decompose projections while analyzing sparsity effects.

Gating Mechanisms: Our residual gating draws from both Highway Net-
works and recent adaptive computation approaches.



3 Method

3.1 Architecture Overview

Our Sparse Gated FFN combines three components:

FFN(z) = Gate(z) - (Waown (Sparse Act(Wiz) o Wyz)) + (1 — Gate(z)) - (1)
3.2 Key Components
Key-Value Decomposition: We split the FFN into separate projections:
K =GeLU Wyzx), V=W, (2)
Selective Activation: We implement sparsity via:
SparseAct(z) = z o mask(z, k = 0.15dp;idden) (3)

where mask selects the top-k values.
Residual Gating: A learned mechanism balances computation:

Gate(z) = o(Layer Norm(Wyx)) (4)

4 Experimental Setup

We evaluate on the FineWeb dataset using:
e Model: Qwen architecture (134M params)
e Training: 100K steps, batch size 1024

e Baselines: SwiGLU and Standard FFN

5 Results and Analysis

5.1 Main Findings

Our sparse gated FFN achieved a validation loss of 5.09 compared to the
SwiGLU baseline’s 4.9266. Key insights:

5.2 Failure Mode Analysis

We identify three key challenges:
1. Gradient propagation issues from sparse activation 2. Capacity bottle-
necks from aggressive sparsity 3. Training instability in deeper layers



Variant Validation Loss Relative FLOPs

SwiGLU (baseline) 4.9266 1.00x
Full Sparse Gated FFN 5.0902 0.15x
Ablations:

No Key-Value Split 5.2341 0.15x
No Residual Gate 5.4123 0.15x
50% Sparsity 5.0321 0.50x

Table 1: Performance comparison

6 Conclusions

While our sparse gated FFN underperformed the baseline, the results suggest
promising directions including adaptive sparsity ratios and improved gradient
flow designs.



