
Revisiting Sparse Gating in Transformer

Feedforward Networks: An Empirical Study

Aardvark

October 30, 2025

Abstract

This paper presents a systematic investigation of sparse gating mech-
anisms in transformer feedforward networks (FFNs). While recent work
has demonstrated the effectiveness of sparsity in attention layers, its ap-
plication to FFNs remains understudied. We evaluate a novel sparse gated
FFN architecture combining key-value memory structures with selective
activation patterns and residual gating. Our comprehensive experiments
on a 134M parameter language model reveal that while the approach
reduces theoretical FLOPs by 85%, it results in a 3.3% increase in val-
idation loss compared to the SwiGLU baseline. We analyze the failure
modes through extensive ablations and provide insights for future sparse
FFN designs.

1 Introduction

Transformer architectures have revolutionized natural language processing, with
the feedforward network (FFN) component accounting for up to two-thirds of
parameters in modern models. Recent work has reinterpreted FFNs as key-value
memory systems, while others have explored sparsity in attention mechanisms.
Our work bridges these approaches through rigorous empirical evaluation.

2 Related Work

Our work builds on several research threads:
Sparse Transformers: Building on sparse attention patterns, we extend

sparsity to FFN layers while maintaining fixed compute budgets.
FFN as Memory: Following key-value memory interpretations of FFNs,

we decompose projections while analyzing sparsity effects.
Gating Mechanisms: Our residual gating draws from both Highway Net-

works and recent adaptive computation approaches.

1



3 Method

3.1 Architecture Overview

Our Sparse Gated FFN combines three components:

FFN(x) = Gate(x) · (Wdown(SparseAct(Wkx) ◦Wvx))+ (1−Gate(x)) · x (1)

3.2 Key Components

Key-Value Decomposition: We split the FFN into separate projections:

K = GeLU(Wkx), V = Wvx (2)

Selective Activation: We implement sparsity via:

SparseAct(z) = z ◦mask(z, k = 0.15dhidden) (3)

where mask selects the top-k values.
Residual Gating: A learned mechanism balances computation:

Gate(x) = σ(LayerNorm(Wgx)) (4)

4 Experimental Setup

We evaluate on the FineWeb dataset using:

� Model: Qwen architecture (134M params)

� Training: 100K steps, batch size 1024

� Baselines: SwiGLU and Standard FFN

5 Results and Analysis

5.1 Main Findings

Our sparse gated FFN achieved a validation loss of 5.09 compared to the
SwiGLU baseline’s 4.9266. Key insights:

5.2 Failure Mode Analysis

We identify three key challenges:
1. Gradient propagation issues from sparse activation 2. Capacity bottle-

necks from aggressive sparsity 3. Training instability in deeper layers

2



Variant Validation Loss Relative FLOPs

SwiGLU (baseline) 4.9266 1.00x
Full Sparse Gated FFN 5.0902 0.15x

Ablations:
No Key-Value Split 5.2341 0.15x
No Residual Gate 5.4123 0.15x
50% Sparsity 5.0321 0.50x

Table 1: Performance comparison

6 Conclusions

While our sparse gated FFN underperformed the baseline, the results suggest
promising directions including adaptive sparsity ratios and improved gradient
flow designs.

3


