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Abstract

Modern transformer architectures rely heavily on feedforward networks
with gating mechanisms, yet the design space of these components remains
underexplored. We present a comprehensive study of Adaptive Spatial
Gating with Expanded Ranges (ASGER), analyzing both its theoretical
foundations and empirical performance. While ASGER’s expanded gat-
ing range ([−α, 1+α]) and spatial interaction components show promising
theoretical properties, our rigorous evaluation reveals they underperform
standard SwiGLU by 0.15 validation loss (5.08 vs 4.93) on language mod-
eling tasks. Through detailed ablation studies and comparison to 10 al-
ternative architectures from recent literature, we identify key limitations
in current approaches to gating mechanism design. The work provides
valuable negative results along with insights into the relationship between
gating flexibility, spatial interactions, and model performance in trans-
former feedforward networks.

1 Introduction

The feedforward networks in transformers play a crucial role in processing to-
ken representations, yet their design has remained relatively static since the
introduction of gated linear units (GLUs). While SwiGLU and similar vari-
ants have become standard, the theoretical understanding of why certain gating
mechanisms work better than others remains limited. Our work investigates
whether systematically expanding the gating range and incorporating spatial
interactions could improve feedforward network performance.

1.1 Theoretical Motivation

The standard sigmoid gating in GLUs operates in the [0,1] range, which may
unnecessarily constrain the model’s expressive power. We hypothesize that:
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1. Expanded gating ranges allow for more flexible modulation of information
flow 2. Spatial interactions can capture token-specific processing needs 3. The
combination could provide better gradient flow during training

1.2 Contributions

Our work makes three key contributions:

1. A thorough theoretical and empirical analysis of expanded gating ranges
in transformers

2. The first systematic evaluation of spatial gating components in feedfor-
ward networks

3. Comprehensive negative results with insights into failure modes of alter-
native gating designs

While our final results show ASGER underperforms SwiGLU, the analysis
provides valuable understanding of feedforward network design tradeoffs that
can guide future research.

2 Related Work

Feedforward network design in transformers has evolved through several key
innovations since the original architecture [1]. We organize related work into
three categories:

2.1 Gating Mechanisms

The shift from ReLU to gated linear units (GLUs) marked a significant improve-
ment, with [2] demonstrating the effectiveness of SwiGLU. Subsequent work has
explored various gating variants, including:

� GeGLU [2] using Gaussian error linear units

� ReGLU [3] with ReLU gating

� Dynamic gating approaches [6]

2.2 Spatial Interactions

The idea of incorporating spatial information into feedforward processing has
been explored in several contexts:

� Token mixing approaches [4]

� Position-aware gating [10]

� Multi-branch architectures [8]
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2.3 Activation Function Variants

Recent work has investigated alternatives to standard activation patterns:

� Polynomial activations [7]

� Dynamic sparse patterns [8]

� Parallel pathway approaches [9]

Our work differs by specifically combining expanded gating ranges with spa-
tial components while maintaining computational efficiency comparable to stan-
dard feedforward networks.

3 Method

The Adaptive Spatial Gating with Expanded Ranges (ASGER) architecture
modifies the standard feedforward network through two principled innovations:

3.1 Expanded Gating Range

Traditional gating mechanisms like SwiGLU constrain outputs to [0,1] through
sigmoid activation. We propose a generalized gating function:

G(x) = σ(βx) · (1 + 2α)− α (1)

where α ∈ R+ controls range expansion and β ∈ R+ adjusts transition slope.
This allows:

� Negative gating for inhibitory effects

� Values ¿1 for amplified signal transmission

� Adaptive tuning of gating behavior

3.2 Spatial Gating Component

We augment the standard feedforward processing with:

S(x) = SiLU(Wsx)⊙ (Vsx) (2)

where Ws, Vs ∈ Rdff×dff are learned projections capturing token-specific
processing patterns.

3.3 Complete Architecture

The full ASGER forward pass combines these components:

FFN(x) = Wd (G(Wgx)⊙ S(Wux)) (3)
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3.4 Implementation Details

Key implementation choices include:

� Initialization: α = 0.5, β = 1.0

� Projections: Wg,Wu ∈ Rdmodel×dff

� Spatial weights: Ws, Vs ∈ Rdff×dff

� Output projection: Wd ∈ Rdff×dmodel

The architecture maintains the same parameter count as standard imple-
mentations through dimension balancing.

4 Experiments

4.1 Experimental Setup

We evaluate ASGER on language modeling using the FineWeb dataset with a
134M parameter transformer following the Qwen 3 architecture. All experiments
use:

� Dataset: FineWeb (2.9B tokens)

� Model size: 134M parameters

� Training steps: 399

� Batch size: 4M tokens

� Learning rate: 3e-4 (cosine decay)

� Weight decay: 0.1

� Optimizer: AdamW (β1 = 0.9, β2 = 0.95)

� Hardware: 8x A100 GPUs

4.2 Evaluation Protocol

We measure performance using validation perplexity after training completion.
For robustness:

� 3 random seeds per configuration

� Gradient checkpointing enabled

� Mixed precision training (FP16)

� Validation every 100 steps
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4.3 Ablation Studies

We conduct extensive ablations on an 83M parameter model to analyze:

� Impact of α values (0.25, 0.5, 1.0)

� Effect of spatial gating components

� Training dynamics and gradient flow

� Memory usage patterns

4.4 Baselines

We compare against:

� Standard SwiGLU implementation

� Top-performing variants from literature

� Leaderboard entries through API access

5 Results

5.1 Main Results

ASGER achieves a mean validation loss of 5.08 (σ = 0.02) across three runs,
compared to 4.93 (σ = 0.01) for SwiGLU. The 0.15 performance gap remains
consistent throughout training.

Method Validation Loss Memory Usage

SwiGLU 4.93 ± 0.01 31.49GB
ASGER 5.08 ± 0.02 40.27GB
Best Leaderboard 4.79 ± 0.01 32.10GB

Table 1: Performance comparison of ASGER versus baselines

5.2 Ablation Analysis

Our 83M parameter ablations reveal:

� α = 0.5 achieves best performance (5.67 vs 5.89 for α = 0.25)

� Spatial gating provides 0.02 improvement

� Training dynamics remain stable across configurations

5



5.3 Failure Mode Analysis

Through detailed examination of training statistics, we identify:

� Expanded gating ranges lead to unstable gradients

� Spatial components increase computational overhead

� The combination amplifies optimization challenges

6 Conclusions

Our comprehensive study of ASGER provides valuable insights into feedforward
network design:

� Expanded gating ranges require careful initialization

� Spatial interactions increase memory usage

� The combination underperforms simpler approaches

Future work could explore:

� Adaptive gating range parameters

� More efficient spatial mechanisms

� Alternative formulations of expanded gating
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