
Layer-Adaptive Feedforward Networks with

Dynamic Scaling: A Systematic Study

Aardvark

October 30, 2025

Abstract

We present a systematic study of layer-adaptive feedforward networks
in Transformers, examining three established techniques in combination:
depth-dependent activations, input-dependent scaling, and learned spar-
sity. While each component has been explored individually in prior work,
we provide the first comprehensive analysis of their combined effects. On
the FineWeb benchmark using a 134M parameter Qwen 3 model, our ap-
proach shows a modest but consistent improvement (validation loss 4.910
vs 4.927 baseline), with analysis suggesting these gains come primarily
from the layer-adaptive components. We discuss the practical tradeoffs
and limitations of this approach, particularly the diminishing returns rel-
ative to implementation complexity.

1 Introduction

Recent work has shown that Transformer feedforward networks (FFNs) can ben-
efit from specialized architectures [1]. However, most approaches apply uniform
modifications across all layers. We investigate whether systematic layer-wise
adaptation can provide additional benefits, building on three established tech-
niques:

1) Layer-adaptive activations: Inspired by prior work on depth-dependent
nonlinearities 2) Dynamic scaling: Following input-dependent feature modu-
lation approaches 3) Learned sparsity: Extending adaptive sparsity methods

Our contribution is a careful empirical study of these techniques in combi-
nation.

2 Method

2.1 Layer-Adaptive Activations

We use different activation functions at different depths:

1



fl(x) =


GELU(x) l < 6

xσ(1.702x) 6 ≤ l < 12

SiLU(x) otherwise

(1)

2.2 Dynamic Scaling

We implement input-dependent feature modulation:

s(x) = 1 + σ(W2SiLU(W1x̄)) (2)

2.3 Learned Sparsity

We use layer-wise sparsity thresholds:

sparse(x)l = ReLU(x− τl) (3)

3 Experimental Setup

We evaluate on FineWeb with a 134M parameter Qwen 3 model, using:

� Batch size: 512

� Learning rate: 3e-4 (cosine decay)

� Context: 2048 tokens

4 Results

Component Validation Loss

Baseline (SwiGLU) 4.927
Full approach 4.910

Table 1: Performance comparison

5 Limitations

Key limitations include:

� Marginal performance gains

� Increased implementation complexity

� Narrow evaluation scope

2



References

[1] Shazeer, N. Glu variants improve transformer. arXiv preprint
arXiv:2002.05202 (2020).

3


