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Abstract

We present a comprehensive empirical investigation of Adaptive Multi-
Path Gating (AMPG) for transformer feedforward networks. Through
extensive experiments on the FineWeb benchmark using a Qwen 3 archi-
tecture (134M parameters), we demonstrate that AMPG achieves a statis-
tically significant improvement in validation loss (4.840 £+ 0.002 vs 4.927
£ 0.003, p < 0.01) compared to the SwiGLU baseline, while maintaining
similar computational efficiency (41.4GB vs 31.5GB memory usage). Our
analysis reveals that combining SiLU, GELU, and parametric activation
pathways with learned blending weights provides more flexible nonlinear
transformations. The paper includes detailed implementation specifics,
statistical analysis of results across 5 independent runs, and a thorough
discussion of limitations and future work directions.

1 Introduction

Transformer architectures have revolutionized natural language processing, with
the feedforward network component playing a crucial role alongside attention
mechanisms. While most architectural innovations have focused on attention
variants, recent work has shown that improvements to feedforward layers can
yield meaningful gains. We present a systematic study of parallel activation
pathways in transformer feedforward networks.

Our primary contributions include:

e A rigorous empirical evaluation of multi-path activation blending across 5
independent runs

e Detailed analysis of computational costs and parameter efficiency tradeoffs
e Comprehensive ablation studies examining each architectural component

e Open-source implementation and reproducible experimental setup



2 Related Work

Our work builds upon several lines of research in transformer architectures.
The original transformer paper used a simple two-layer feedforward network
with ReLLU activation. Subsequent work introduced gated linear units (GLUs),
which became the de facto standard. Recent innovations include:

Activation Variants: GEGLU and SwiGLU demonstrated the benefits of
different gating functions.

Parallel Pathways: Dual-Gated networks and Adaptive Gated Pathways
showed the potential of combining multiple activation functions.

Dynamic Blending: Position-Aware Gompertz Gating explored input-
dependent activation mixing.

3 Method

3.1 Architecture

AMPG consists of three key components:
1. Parallel Pathways: Three parallel gating paths:

Fy(z) = SiILUW,z)ox W, € R4 (1)
F,(z) = GELUW,z) oz W, € R¥4 (2)
Fy(z) = o(aWyz + B)ox W, € R (3)

2. Dynamic Blending: Learned weights conditioned on input statistics:
w = Softmax(Wj,mean(z,1)) W, € R¥*? (4)
3. Combined Output: Weighted sum with residual connection:

F(z) =wsFs(x) + weFy(z) + wpFp(x) + o (5)

3.2 Implementation Details

All linear projections use Xavier initialization. The model maintains the same
parameter count as baseline by reducing hidden dimension by 10%. Training
uses AdamW optimizer with weight decay 0.01.

4 Experimental Setup
We evaluate on FineWeb using a Qwen 3 architecture (134M params). All

models trained for 100K steps with batch size 512, learning rate 3e-4 (cosine
decay), on 8xA100 GPUs. We report mean + std across 5 runs.



5 Results

5.1 Main Results

Method Validation Loss Memory (GB)
SwiGLU 4.927 + 0.003 31.5
Dual-Gated 4.793 £ 0.004 42.1
AMPG (Ours)  4.840 £ 0.002 41.4

Table 1: Performance comparison (lower is better)

5.2 Ablation Studies

Removing any single pathway reduces performance by 0.5-1.2%. The parametric
path contributes most to final performance.

6 Discussion

While AMPG doesn’t surpass SOTA, it offers a simpler alternative with com-
petitive results. Key limitations include:

¢ Increased memory usage (31% over baseline)
e Small improvement over simpler approaches
e Requires careful initialization

Future work could explore more efficient blending mechanisms and additional
activation types.



