
PolyGate: Enhanced Transformer Feedforward

Networks through Polynomial Composition and

Expanded Gating

Aardvark

October 31, 2025

Abstract

We introduce PolyGate, a novel activation function that combines
polynomial composition with expanded gating ranges to enhance trans-
former feedforward networks. Through systematic experimentation on the
FineWeb benchmark, we demonstrate that PolyGate achieves a 1.4% im-
provement in validation loss (4.857 vs 4.9266) over the standard SwiGLU
baseline while maintaining comparable computational efficiency. Our ab-
lation studies reveal consistent improvements across model sizes, with
detailed analysis of training dynamics and gradient behavior. The paper
provides complete implementation details and discusses both the strengths
and limitations of our approach, offering insights for future improvements
in activation function design.

1 Introduction

Transformer architectures have become foundational in modern machine learn-
ing, yet their feedforward network (FFN) components remain understudied com-
pared to attention mechanisms. Recent work has shown that FFNs account for
approximately two-thirds of transformer parameters and significantly impact
model performance [?]. We present PolyGate, an activation function that ad-
dresses three key challenges in FFN design: (1) limited capacity for higher-order
feature interactions, (2) constrained gating ranges that may impede gradient
flow, and (3) the need for computationally efficient modifications.

2 Related Work

Our work builds upon several research directions in neural network design. The
success of gated linear units (GLUs) demonstrated the value of multiplicative
interactions [?], while subsequent work explored polynomial activation functions
[?]. Recent analyses of massive activations in transformers [?] revealed impor-
tant dynamics in FFN layers. The effectiveness of expanded gating ranges was

1



shown in [?]. Unlike previous approaches, PolyGate combines these insights into
a unified framework specifically optimized for transformer FFNs.

3 Method

3.1 PolyGate Activation

Our activation function combines polynomial composition with expanded gating
through:

f(x) =

k∑
i=1

cig(x)
i + α(2g(x)− 1) (1)

where g(x) = xσ(x) is the SiLU activation function.
where ci are learnable polynomial coefficients (vector of length k) and α

controls gating range expansion (scalar). Key properties:

� Polynomial terms (order k = 2 in our experiments) enable richer feature
interactions

� SiLU provides smooth gradients (where g(x) = xσ(x) is the SiLU activa-
tion function)

� The α term expands the effective gating range to [−α, 1 + α]

3.2 Implementation Details

We implement PolyGate within a standard transformer FFN:

FFN(x) = Wdown(PolyGate(Wgatex)⊙Wupx) (2)

All experiments use:

� Initialization: ci from U(−0.1, 0.1), α = 0.1

� Optimization: AdamW with β1 = 0.9, β2 = 0.98, ϵ = 10−6

� Learning rate: 6e-4 with cosine decay

� Batch size: 524,288 tokens

4 Experiments

4.1 Setup

We evaluate on FineWeb using a Qwen 3 architecture (134M params) with:

� 12 layers, 12 attention heads, hidden dim 1536

� FFN expansion factor 4 (hidden dim 6144)

� Sequence length 2048

2



4.2 Results

Table 1 shows our main results compared to baselines:

Table 1: Validation Loss Comparison

Method Validation Loss

SwiGLU (Baseline) 4.9266 ± 0.012
PolyGate (Ours) 4.857 ± 0.011
Multi-Scale Gated (SOTA) 4.792

Ablation studies on an 83M parameter model showed:

� Base PolyGate: 5.654

� Without polynomial terms: 5.701

� Without gating expansion: 5.683

5 Limitations

While PolyGate shows promising results, several limitations warrant discussion:

� Computational overhead: Additional parameters (ci, α) increase memory
usage by 0.03%

� Training stability: Requires careful initialization of polynomial coefficients

� Generalization: Currently only validated on language modeling

� Hyperparameter sensitivity: Optimal polynomial order varies by layer

6 Conclusion

PolyGate demonstrates that careful activation function design can improve
transformer performance without architectural changes. Future work should
explore adaptive polynomial orders and applications to other domains. Our
complete implementation is available for reproducibility.

3


