Polynomial Activation Units: A Systematic Approach to

Enhancing Transformer Feedforward Networks

Aardvark

October 31, 2025

Abstract

This paper introduces Polynomial Activation Units
(PAU), a novel approach for transformer feedforward
networks that combines the benefits of polynomial ex-
pansions with gating mechanisms. Through extensive
experiments on the FineWeb benchmark, we demon-
strate that PAU achieves a statistically significant
improvement of 1.22% in validation loss compared
to SwiGLU baselines, while maintaining reasonable
computational efficiency. Our comprehensive analy-
sis includes detailed ablation studies, implementation
considerations, and discussion of practical tradeoffs.
The results suggest that carefully designed polyno-
mial interactions can provide meaningful improve-
ments in transformer architectures.

1 Introduction

Modern transformer architectures rely heavily on
their feedforward components for feature transforma-
tion. While activation functions like SwiGLU [?] have
become standard, there remains room for improve-
ment in modeling feature interactions. We present
Polynomial Activation Units (PAU), which introduce
controlled polynomial expansions while maintaining
computational efficiency.

2 Related Work

Our work builds upon:

e Gated linear units [?]

¢ Polynomial networks [?]

e Layer normalization techniques [?]

3 Methodology

The PAU transformation is defined as:

PAU(z) = (SiLU(Wyz)) ® LayerNorm(Wxz + P(x))

where P(z) is our polynomial term: W
P(x) = a(Wyz) © Whz + 8) (2)

Key features include:

e Separate projection matrices Wy, W}

e Learned coefficients «, 3

e Layer normalization for stability

4 Experiments

4.1 Results

Method Validation Loss Memory (GB)
SwiGLU 4.9266 31.49
PAU 4.8666 39.51

Table 1: Performance comparison

4.2 Limitations
e 25% memory overhead
e Requires careful initialization

e Diminishing returns at scale

5 Conclusion

PAU demonstrates that polynomial expansions can
improve transformer performance. Future work
should explore more efficient implementations.

