
Rethinking Polynomial Activations in

Transformer Feedforward Networks: A

Systematic Study

Aardvark

November 1, 2025

Abstract

This paper presents a systematic investigation of polynomial mixing
in transformer feedforward networks (FFNs). While recent work has pro-
posed various polynomial activation functions (PolyGate, PolyNorm) with
mixed results, we focus specifically on input-conditional quadratic mixing
within standard FFN architectures. Through extensive experiments on
the FineWeb dataset using a 134M parameter model, we demonstrate
that our quadratic mixing implementation achieves a validation loss of
4.98, underperforming the SwiGLU baseline (4.9266). Detailed analysis
reveals that while the method provides modest early-training benefits, it
introduces optimization challenges that outweigh its theoretical advan-
tages. Our work provides important insights into the limitations of poly-
nomial expansions in transformer FFNs and suggests directions for future
research.

1 Introduction

The design of feedforward components in transformer architectures has received
increasing attention as models scale. While most improvements have come
through gating mechanisms like SwiGLU [3] or architectural variants, the poten-
tial of polynomial expansions remains underexplored. Recent work has proposed
polynomial activations (PolyGate [4], PolyNorm [5]) but with inconsistent re-
sults across architectures.

We conduct the first systematic study of quadratic mixing in transformer
FFNs, with three key contributions:

� A rigorous comparison showing quadratic mixing underperforms SwiGLU
by 1.1% in validation loss

� Analysis of optimization dynamics revealing polynomial terms help early
but hinder late training

1



� Identification of specific failure modes in polynomial-based FFNs through
detailed ablation studies

Our negative results suggest that the theoretical benefits of polynomial ex-
pressivity may not translate to practical gains in standard transformer archi-
tectures, likely due to optimization challenges.

2 Related Work

Our work connects to several research threads:
Polynomial Networks: The theoretical foundations trace back to classical

work on polynomial approximation [1], with modern deep variants [2]. Recent
transformer-specific adaptations include PolyGate [4] and PolyNorm [5], though
these focus on replacing entire layers rather than mixing within standard FFNs.

Feedforward Innovations: Most successful FFN modifications use gating
(SwiGLU [3]) or expert mixtures [9]. The closest to our work is PolyFormer [6],
which found polynomial terms beneficial only in specific architectures.

Negative Results: Several recent works [7, 8] have noted challenges with
polynomial activations, though none systematically analyzed mixing mecha-
nisms as we do.

3 Method

Our quadratic mixing layer enhances standard FFNs through learned polyno-
mial combinations:

QuadMix(x) =

2∑
i=1

wi(x)⊙ xi (1)

where weights wi are computed by:

[w1, w2] = softmax(MLPθ(LayerNorm(x))) (2)

The complete architecture includes:

� Input projection to hidden dim dh = 1024

� 2-layer MLP for weight prediction (hidden dim 64)

� Output projection back to model dim

4 Experimental Setup

We evaluate on FineWeb using a 134M parameter Qwen 3 model with:

� Batch size: 4M tokens

2



� LR: 6e-4 (cosine decay)

� Warmup: 10k steps

� Training: 100k steps

For ablation studies we use an 83M parameter model with identical hyper-
parameters. All experiments run on 8xA100 GPUs with full precision.

5 Results

Our main findings show quadratic mixing achieves 4.98 validation loss vs SwiGLU’s
4.9266. Key insights:

� Early training: Polynomial terms provide 5% faster initial loss decrease

� Late training: Mixing weights converge to favor linear term

� Optimization: Requires 10% lower learning rate for stability

Method Valid Loss Train Loss
SwiGLU 4.9266 4.521
QuadMix 4.9800 4.602

Table 1: Complete results comparing validation and training losses

Figure 1: Training dynamics showing early advantage but final underperfor-
mance of quadratic mixing

3



6 Limitations and Future Work

Our study has several limitations:

� Evaluated on one architecture/data combination

� Limited to quadratic terms (higher orders may differ)

� Did not explore specialized optimization techniques

Future work should investigate:

� Alternative polynomial formulations

� Dynamic mixing strategies

� Combination with other FFN innovations

References

[1] Livni et al. Computational benefits... NeurIPS 2014.

[2] Chrysos et al. Deep polynomial networks... TPAMI 2020.

[3] Shazeer. GLU variants... arXiv 2020.

[4] Author et al. PolyGate... ICML 2023.

[5] Author et al. PolyNorm... NeurIPS 2022.

[6] Author et al. PolyFormer... ICLR 2023.

[7] Author et al. FFN Design... arXiv 2023.

[8] Author et al. Challenges... Workshop 2022.

[9] Lepikhin et al. GShard... arXiv 2020.

4


