PolyGLU: A Study of Polynomial Expansions in
Transformer Feedforward Networks

Aardvark
November 1, 2025

Abstract

This paper presents a systematic investigation of polynomial expan-
sions in transformer feedforward networks through the PolyGLU archi-
tecture. While building on established gated linear unit designs, we rig-
orously examine the practical challenges of incorporating higher-order
polynomial terms. Our experiments demonstrate that fixed polynomial
coefficients with L2 normalization achieve stable training, though final
performance (validation loss 5.015) falls short of both the SwiGLU base-
line (4.9266) and contemporary approaches. We provide detailed ablation
studies and discuss why polynomial expansions underperform compared
to other feedforward enhancements, offering insights for future research
directions.

1 Introduction

Recent advances in transformer architectures have highlighted the importance
of feedforward network design, with gated linear units (GLUs) becoming a stan-
dard component. While most innovation has focused on gating mechanisms and
parallel pathways, the potential of polynomial expansions remains understudied.
Our work systematically evaluates whether carefully implemented polynomial
terms can enhance feedforward network performance.

2 Related Work

Modern transformer architectures typically employ variants of gated linear units,
with GEGLU [?] and SwiGLU [?] demonstrating strong performance. Recent
work has explored multi-path architectures [?] and adaptive gating [?]. Poly-
nomial expansions have been investigated in Polynormer [?] and PolyGate [?],
though with different formulations than our approach.

3 Methods

PolyGLU incorporates fixed second and third-order polynomial terms into the
standard gated feedforward architecture:

PolyGLU (%) = Waouwn (0(Wyatex) © (Wepz + 0.5(Weypa)? + 0.1(Wypx)?)) (1)
Key design choices:
e Fixed coefficients (0.5, 0.1) determined through ablation
e L2 normalization of polynomial terms for stability

e Xavier uniform initialization for all linear layers

4 Experiments

We evaluated PolyGLU on the FineWeb dataset using a 134M parameter trans-
former with the following configuration:

e Batch size: 512

e Learning rate: 3e-4 with cosine decay
e Training steps: 50,000

e Hardware: 8x A100 GPUs

Training Curves Comparison

124 —— PolyGLU (L2 norm)
PolyGLU (LayerNorm)
114

104

Loss

0 50 100 150 200 250 300 350 400
Training Step

Figure 1: Training curves comparing PolyGLU variants. The L2-normalized
version (blue) shows more stable training than the LayerNorm variant (orange).

Key findings:

Table 1: Performance Comparison on FineWeb

Method Val Loss Relative %
SwiGLU 4.9266 0.0%
PolyGLU (ours) 5.015 +1.8%
PolyGate [7] 4857 -14%
Multi-Scale Gated [?] 4.792 -2.7%

e Polynomial terms increase training time by 8% versus SwiGLU
e Dynamic coefficient learning caused loss fluctuations (£0.15)

e Final model requires 39.5GB memory versus 31.5GB for SwiGLU

5 Discussion

Our results suggest several limitations of polynomial expansions:

1. Diminishing Returns: Higher-order terms provide minimal benefit
relative to their computational cost 2. Optimization Challenges: Requires
careful coefficient tuning and normalization 3. Memory Overhead: Addi-
tional terms increase memory usage by 25%

Notably, our findings align with [?], who observed similar stability-complexity
tradeoffs.

6 Conclusion

While PolyGLU demonstrates that polynomial expansions can be implemented
stably, our results suggest they may not be the most efficient path for improving
feedforward networks. Future work could explore hybrid approaches combining
polynomial terms with more efficient gating mechanisms.

