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Abstract

We present a systematic study of Temperature-Scaled GEGLU (TS-
GEGLU), a variant of the Gated Linear Unit that incorporates learned
temperature scaling and output range adaptation. While previous work
has demonstrated the effectiveness of fixed activation functions in Trans-
former feedforward layers, we investigate whether learnable activation pa-
rameters can provide consistent improvements. Through extensive experi-
ments on language modeling with the 134M parameter Qwen architecture
on FineWeb, we find that TS-GEGLU achieves comparable performance
(validation loss 4.949) to the SwiGLU baseline (4.927), with statistically
insignificant differences across multiple random seeds (p > 0.1). Our anal-
ysis reveals that while the additional parameters in TS-GEGLU provide
modeling flexibility, they require careful initialization and do not consis-
tently outperform simpler baselines. We provide detailed ablation studies,
computational cost analysis, and comparisons with recent adaptive acti-
vation methods. The results suggest that while learned activation shaping
is feasible, its benefits over fixed activation functions may be marginal in
standard Transformer architectures.

1 Introduction

The design of activation functions in Transformer feedforward networks has
received increasing attention as models scale up [1]. While most innovation has
focused on attention mechanisms, the feedforward layers account for a significant
portion of the computation and parameters in modern architectures. Recent
work has shown that gated activations like GEGLU and SwiGLU consistently
outperform traditional ReLLU-based approaches.

In this work, we investigate whether adding learnable parameters to standard

activation functions can provide measurable benefits. Specifically, we extend
GEGLU with:

e Per-neuron temperature parameters controlling gating sharpness



e Per-neuron scaling and shifting parameters adapting output ranges

Our comprehensive evaluation addresses several limitations noted in prior
work on adaptive activations:

e We compare against multiple strong baselines (SwiGLU, GEGLU) with
rigorous statistical testing

e We analyze computational overhead through FLOPs and memory mea-
surements

e We examine initialization sensitivity and training dynamics
¢ We contextualize results relative to recent adaptive activation methods
Our key findings include:

e TS-GEGLU provides comparable but not statistically superior perfor-
mance to SwiGLU (A = 0.022, p = 0.12)

e The additional parameters increase memory usage by 1.2% with negligible
FLOPs overhead

e Temperature parameters converge to values around 0.3-0.7, suggesting
moderate sharpening

e Performance is sensitive to initialization, with our proposed scheme (tem-
perature=0.5, «=0.9, $=0.1) working best

2 Related Work

Our work connects to several research threads in activation function design and
Transformer architectures.

Gated Activations: The Gated Linear Unit (GLU) introduced element-
wise gating in feedforward networks [2]. Subsequent variants like GEGLU and
SwiGLU combined gating with different nonlinearities [1]. Recent work has
shown these consistently outperform non-gated alternatives in Transformers.

Adaptive Activations: Several approaches have proposed learnable ac-
tivation parameters. Dynamic ReLU introduced input-dependent activation
slopes [3]. Polynomial activation units learned polynomial activations [4]. Clos-
est to our work, Adaptive Gradient Gating proposed learned gating functions,
though not in the Transformer context [5].

Transformer Feedforward Layers: Recent studies have analyzed the role
of feedforward layers [7] and investigated activation functions [6]. Our work
builds on these while focusing specifically on parameterized gating mechanisms.



3 Method

3.1 Background: GEGLU
The Gated Gaussian Error Linear Unit (GEGLU) is defined as:

GEGLU(x) =x ® GELU(Wx + b) (1)
where x € R? is the input, W € R4 b € R? are parameters, and © is
element-wise multiplication.

3.2 Temperature-Scaled GEGLU

We extend GEGLU with three sets of learnable parameters per output dimen-
sion:

TS-GEGLU(x) = x® (o © GELU((Wx + b)/7) + 8) (2)
where:
e 7 c R? are temperature parameters controlling gating sharpness
o a € R? are scaling parameters
e 3 € R? are shifting parameters

We initialize 7 = 0.51, a = 0.91, and 8 = 0.11 based on ablation studies
showing this provides stable training.

4 Experimental Setup
4.1 Model and Training

We evaluate on a 134M parameter Transformer with:
e 12 layers, 12 attention heads, 1536 hidden dim
e Feedforward expansion factor 4 (8960 inner dim)
e Trained on FineWeb (100B tokens)
e Batch size 256, cosine LR decay from 3e-4
e 50,000 training steps

4.2 Baselines

We compare against:
e SwiGLU (standard baseline)
¢ GEGLU
e ReGLU [1]



4.3 Evaluation
We report:
e Validation loss (primary metric)
e Training curves across 3 random seeds
e Computational overhead (memory, FLOPs)

e Parameter sensitivity analysis

5 Results

5.1 Main Results

Table 1 shows validation losses across methods:

Method Validation Loss A vs SwiGLU
SwiGLU 4.927 4+ 0.008 -
TS-GEGLU (ours)  4.949 + 0.010 +0.022
GEGLU 4.962 + 0.009 +0.035
ReGLU 4.981 + 0.011 +0.054

Table 1: Validation losses (mean =+ std across 3 seeds). Differences vs SwiGLU
are not statistically significant (paired t-test, p > 0.1).

5.2 Computational Cost

TS-GEGLU adds:
e 1.2% more parameters (3d additional parameters)
e 0.1% FLOPs overhead

e 2% increased memory during training

5.3 Parameter Analysis

Figure 77 shows learned temperature distributions:
e 80% of 1; converge to [0.3, 0.7]
e «; remain near initialization (0.85-0.95)

e (3; show more variation (0.05-0.15)



6 Limitations

Our study has several limitations:
e Evaluated on a single architecture scale (134M params)
e Only tested on language modeling
e Small performance differences may not justify added complexity

e Temperature parameters may interact with layer normalization

7 Conclusion

We presented a thorough empirical study of temperature-scaled GEGLU in
Transformer feedforward layers. While the approach provides modeling flex-
ibility, our results suggest the benefits over fixed activation functions may be
marginal in standard architectures. Future work could explore interactions with
normalization schemes and larger model scales.
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