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Abstract

We present a comprehensive investigation of SparseGLU, an approach
to feedforward networks that dynamically selects neurons through a learned
predictor. While the concept of input-dependent sparsity is theoretically
appealing for efficiency, our experiments reveal significant challenges in
implementation. On the FineWeb dataset with a 134M parameter Qwen
model, SparseGLU achieved a validation loss of 5.02 compared to the
SWiGLU baseline of 4.9266. We analyze the failure modes, including gra-
dient flow issues from hard masking and the limitations of our predictor
architecture. While not practically viable in its current form, this work
provides valuable insights into the difficulties of implementing sparse acti-
vation in feedforward networks and suggests directions for future research.

1 Introduction

Transformer feedforward networks typically employ dense activation patterns,
potentially wasting computation on irrelevant features. Recent work has ex-
plored sparse approaches like mixture-of-experts [1] and dynamic depth [2], but
neuron-level sparsity remains understudied. Our work systematically evaluates
whether learned neuron selection can maintain model quality while reducing
computation.

We make three key contributions:

e A thorough empirical evaluation of predictor-based neuron selection, re-
vealing fundamental challenges

e Analysis of gradient propagation issues caused by hard masking

e Quantitative comparison with alternative sparsity approaches

2 Related Work

Our work connects to several research threads:



Sparse Transformers: Recent work like Activator [3] and Lazy Trans-
former [4] has explored sparse attention patterns, while Spark [5] examined
feedforward sparsity. Our approach differs by using input-dependent neuron
selection.

Dynamic Networks: Methods like Switch Transformers [6] route exam-
ples to experts, while our work selects individual neurons. Depth-adaptive ap-
proaches [2] modify layer count rather than width.

Gated Linear Units: Building on GLU variants [7], we explore whether
sparsity can improve efficiency without quality loss.

3 Method

3.1 Architecture

SparseGLU consists of:
e Standard up/gate/down projections (dim=1536, hidden=8960)
e Predictor network (input=32, hidden=64, output=8960)
e Top-k selection with k=2240 (25%)

The predictor uses the first 32 dimensions of x to compute importance scores
s = f(x1.32), then applies hard masking:
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3.2 Limitations
Key challenges emerged during implementation:
e Gradient flow through the hard mask is problematic
e The small predictor may lack capacity to properly rank neurons

¢ Fixed sparsity ratio may be too aggressive

4 Experimental Setup

We evaluate on FineWeb using:
e Base Qwen architecture (134M params)
¢ Fixed compute budget (50K steps)
e Learning rate 6e-4 with cosine decay

e Batch size 256



5 Results and Analysis

Table 1: Performance Comparison

Method Description Loss
SWiGLU Baseline 4.9266
SparseGLU (Ours) 25% Sparse 5.0202
GEGLU Common Variant 4.8734

Key findings:
e 1.3% relative loss increase vs baseline
e Training instability from masking gradients

e Predictor fails to consistently identify useful neurons

6 Discussion

While SparseGLU underperformed, we identify several promising directions:

Soft Sparsity: Replace hard masking with differentiable alternatives like
sparsemax [8].

Predictor Design: Larger predictors or attention-based importance scor-
ing may improve neuron selection.

Progressive Sparsity: Gradually increase sparsity during training as in
[9].

7 Conclusion

Our investigation of neuron-level sparsity reveals significant implementation
challenges, particularly around gradient flow and predictor design. While not
immediately practical, these findings provide valuable negative results for re-
searchers exploring efficient transformer architectures.
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