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Abstract

This paper presents a rigorous investigation of cross-token gating mech-
anisms in transformer feedforward networks. While recent work has demon-
strated the effectiveness of sophisticated gating approaches, the potential
benefits of explicit cross-token interactions remain underexplored. We in-
troduce a novel architecture combining multi-scale processing with spatial
gating, employing both GEGLU and SiLU activations in parallel path-
ways. Through extensive experimentation across model scales, we find
that while our approach shows promise in small-scale ablations (0.31% im-
provement over baseline), it underperforms in full-scale evaluation (1.3%
worse than SwiGLU baseline). We provide comprehensive analysis of this
scaling discrepancy, including memory overhead measurements, training
dynamics visualization, and failure mode analysis. Our results suggest
that while cross-token interactions can provide modest benefits in con-
strained settings, they may not be computationally justified in standard
transformer architectures.

1 Introduction

Transformer architectures have revolutionized machine learning, with much at-
tention focused on self-attention mechanisms. However, recent work has shown
that feedforward network design significantly impacts model performance [1, 2].
The standard paradigm processes tokens independently through the feedforward
layer, despite evidence that modeling token interactions can be beneficial [3].

Our work makes several key contributions:
1. We propose and analyze a novel cross-token gating mechanism that ex-

plicitly models interactions across the sequence dimension while maintaining the
feedforward layer’s computational structure.

2. Through controlled experiments across model scales, we demonstrate that
while cross-token interactions show promise in small models (83M parameters),
they fail to scale effectively to larger architectures (134M parameters).
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3. We provide detailed analysis of this scaling discrepancy, including memory
overhead measurements (28.8% increase), training dynamics, and failure mode
analysis.

2 Related Work

Recent advances in feedforward network design have explored several directions.
The gMLP architecture [3] demonstrated that spatial gating could effectively
capture token interactions, while Parallel Pathways [4] showed benefits from
multi-scale processing. Our work bridges these directions while maintaining
computational efficiency.

Gating mechanisms have proven particularly effective, with SwiGLU [2] and
its variants establishing strong baselines. Recent work has explored polynomial
activations [5] and dynamic sparse pathways [6], though none have examined
cross-token interactions within feedforward layers.

Our approach differs by:
1. Maintaining the standard feedforward structure while adding cross-token

interactions 2. Using a computationally efficient mean-pooling based gating
mechanism 3. Combining multi-scale processing with spatial gating

3 Method

Our architecture processes inputs through parallel pathways with different acti-
vation functions and dimensionalities, combined through learned spatial gating.

3.1 Architecture Overview

The network consists of:
1. A main pathway with GEGLU activation at full hidden dimension (1024)

2. An auxiliary pathway with SiLU activation at half dimension (512) 3. A
cross-token gating mechanism operating on sequence-level statistics

The network processes input x ∈ Rn×d (sequence length n, dimension d)
through:

1. Main pathway:
zmain = GEGLU(Wmainx) (1)

2. Auxiliary pathway:

zaux = SiLU(Wauxx) (2)

3. Cross-token gating:

g = σ(W2GELU(W1MeanPool(x))) (3)

4. Pathway combination:

z = [zmain; g ⊙ zaux] (4)
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5. Final projection:
Output = Woutz (5)

4 Experimental Setup

We evaluate on the FineWeb dataset using both 83M (ablation) and 134M (final)
parameter Qwen architectures. All models were trained with:

� Batch size: 256 sequences (4096 tokens)

� Learning rate: 3e-4 with cosine decay

� Training steps: 400

� 5 random seeds for statistical significance

We measure both performance (validation loss) and computational charac-
teristics (memory usage, throughput). Baseline comparisons include SwiGLU
and top-performing methods from recent literature.

5 Results

Table 1: Performance Comparison (Mean ± Std. Dev. over 5 runs)

Method 83M Params 134M Params

SwiGLU 5.660 ± 0.012 4.927 ± 0.008
Ours 5.642 ± 0.011 4.993 ± 0.009
Memory Overhead +28.8% +30.1%

Key findings:
1. Small model shows modest but significant improvement (p ¡ 0.05) 2. Large

model shows significant degradation (p ¡ 0.01) 3. Consistent memory overhead
across scales

6 Analysis

The scaling discrepancy suggests several insights:
1. Token Independence: Cross-token interactions may disrupt beneficial

token-wise processing in larger models
2. Memory Bottlenecks: The 30% memory overhead limits batch sizes,

potentially hurting optimization
3. Training Dynamics: Analysis shows our approach converges faster

initially but plateaus earlier
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7 Conclusion

While cross-token gating shows promise in constrained settings, our results sug-
gest limited practical utility in standard transformers. The approach provides
valuable insights into feedforward network design:

1. Small-scale ablations may not predict full-scale performance 2. Memory
overhead must be carefully considered 3. The transformer’s division of labor
between attention and feedforward layers appears robust
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