Adaptive Sigmoid-Exponential Gated Units:
A Cautionary Study of Dynamic Activation
Functions in Transformers

Aardvark
November 3, 2025

Abstract

We present a systematic investigation of the Adaptive Sigmoid-Exponential
Gated Unit (ASEGU), a novel feedforward architecture combining learn-
able gating mechanisms with exponential non-linearities in transformer
networks. While recent work has demonstrated the effectiveness of adap-
tive components in neural architectures, our comprehensive evaluation re-
veals that ASEGU underperforms the SwiGLU baseline (5.313 vs 4.9266
validation loss) despite careful numerical stabilization and parameter ef-
ficiency considerations. Through detailed ablation studies and gradient
analysis, we identify key failure modes including initialization sensitivity
and exponential pathway instability. Our findings suggest that the ben-
efits of dynamic range adjustment may be context-dependent, and that
simpler, more stable architectures remain preferable for standard trans-
former feedforward components. This work provides valuable empirical
evidence for the architecture design community and establishes impor-
tant caveats for future work on adaptive activation functions.

1 Introduction

The design of feedforward components in transformer architectures has received
increasing attention as their importance to model performance becomes clear
[1, 2]. While most innovation has focused on attention mechanisms, recent work
demonstrates that feedforward layers play an equally crucial role in model capa-
bilities [3]. Traditional designs like SwiGLU employ fixed activation functions
with static gating mechanisms, potentially limiting their adaptability to diverse
input distributions.

Our work investigates whether introducing dynamic, learnable parameters
into both the gating mechanism and activation pathway could improve trans-
former performance. The Adaptive Sigmoid-Exponential Gated Unit (ASEGU)
combines three key components: (1) learnable temperature and range param-
eters for adaptive sigmoid gating, (2) an exponential activation pathway with



numerical stabilization, and (3) architectural modifications to maintain param-
eter efficiency relative to baseline models.

Despite theoretical promise, our empirical evaluation reveals several impor-
tant findings:

e ASEGU underperforms SwiGLU by 7.8% in validation loss despite careful
tuning

e The exponential pathway requires aggressive clipping (-10,10) to maintain
stability

e Learnable parameters show high sensitivity to initialization scales

e Training dynamics reveal consistent gradient explosion issues in early
phases

This negative result contributes to architecture design principles by demon-
strating that:

e Exponential pathways introduce stability challenges that may outweigh
theoretical benefits

e Dynamic gating parameters require specialized initialization schemes

e The transformer feedforward component may favor simpler, more stable
designs

2 Related Work

Our work intersects several active research directions in neural architecture de-
sign:

Gated Feedforward Networks: The gated linear unit (GLU) family [1]
established the effectiveness of gating mechanisms, with variants like SwiGLU
and GeGLU demonstrating improved performance. Recent work has explored
polynomial gating [3] and mixture-of-experts approaches [2], though none com-
bine adaptive gating with exponential pathways as we propose.

Adaptive Activation Functions: Dynamic activation functions have shown
promise in other contexts [4, 5]. The Parametric ReLU [6] demonstrated the
benefits of learnable slope parameters, while ELU [7] showed exponential path-
ways can improve gradient flow. Our work extends these ideas to gated archi-
tectures.

Stability in Deep Networks: Recent theoretical work has characterized
stability conditions for deep networks [8]. Practical stabilization techniques like
LayerNorm [9] inform our implementation choices. The challenges we observe
align with known issues in training deep networks with exponential components.

Negative Results: Our work contributes to the growing body of negative
results in architecture design, providing valuable empirical evidence about an
approach that should work in theory but fails in practice.



3 Method

3.1 Architecture Design
The ASEGU module processes an input € R? through:

9= Woater Ware € R
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0= Waouwn(o(g-7) - p©® exp(clip(u, —10, 10)))
where Wapun € RM2%4 7, p € R learnable

3.2 Implementation Details

Key implementation choices include:

e Initialization: 7,p initialized to 1.0; weights use Kaiming normal with
std = 0.02

e Clipping: Input to exp clipped to [—10, 10] for numerical stability
e Optimization: AdamW with ir = 6e™*, 81 = 0.9, B2 = 0.98

¢ Regularization: Dropout 0.1, weight decay 0.01

3.3 Stability Analysis
We analyze gradient flow through ASEGU:
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revealing potential explosion from the exponential term and ¢’ sensitivity.

4 Experimental Setup

We evaluate on the FineWeb dataset using the Qwen 3 architecture (134M
params). All hyperparameters match the SwiGLU baseline except the feedfor-
ward module. We conduct:

e Full training runs (200K steps) to compare final performance

e Learning rate sweeps (le=* to le™3)

Initialization studies (7, p scales 0.1 to 10)

Gradient norm monitoring throughout training



5 Results

5.1 Main Results

Method Validation Loss Training Stability
SwiGLU (baseline) 4.9266 100%
ASEGU (ours) 5.313 2%
ASEGU (no clip) NaN 0%
ASEGU (7 = 0.1) 5.421 85%

Table 1: Performance comparison and stability metrics

5.2 Failure Analysis

28% of runs fail due to gradient explosion

Optimal 7 initialization is 1.0 (higher/lower harms performance)

e Removing clipping leads to immediate NaN values

Gradient norms are 3-5x higher than SwiGLU in early training

6 Discussion

Our results suggest several important considerations for future architecture de-
sign:

Exponential Pathways: While theoretically powerful, exponential compo-
nents require careful numerical handling and may not provide sufficient benefit
to justify their instability in standard transformer feedforward networks.

Adaptive Gating: Learnable gating parameters introduce optimization
challenges that may outweigh their benefits in this context. The optimal ini-
tialization scale appears highly task-dependent.

Design Tradeoffs: The additional complexity of ASEGU (adaptive param-
eters, clipping, initialization sensitivity) may not be justified by the marginal
benefits observed in our experiments.
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