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Abstract

This paper presents a comprehensive investigation of isotropy-preserving
pathways in transformer feedforward networks. While recent work has
demonstrated the effectiveness of gated architectures like SwiGLU, we
conduct a systematic study of whether explicit isotropy preservation through
parallel pathways offers complementary benefits. Our experiments on
the FineWeb dataset with a 134M parameter model reveal that while
our proposed architecture achieves a validation loss of 5.06 (compared
to SwiGLU’s 4.9266), the analysis provides valuable insights into path-
way interactions, gradient behavior, and the tradeoffs between gating and
isotropy preservation. We include extensive ablation studies, statistical
analysis across multiple runs, and recommendations for future architec-
tural innovations.

1 Introduction

Transformer architectures have revolutionized machine learning, with their feed-
forward networks (FFNs) playing a crucial role. While the original FFN design
used simple ReLU/GELU activations, recent work has shown the effectiveness of
gated architectures [?]. However, the relationship between gating mechanisms
and isotropy preservation remains understudied, despite evidence that isotropy
affects model training dynamics [?].

2 Related Work

Our work builds on three key research directions:

2.1 Gated Feedforward Networks

The success of GLU variants like SwiGLU [?] demonstrated that multiplicative
gating can outperform traditional activation functions. Recent analyses suggest
these architectures function as key-value memories [?].
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2.2 Parallel Pathway Architectures

Several studies have explored parallel computation in FFNs [?, ?], with mixed
results. Our work provides new insights into pathway interference effects.

2.3 Isotropy in Neural Networks

Recent theoretical work has highlighted the importance of isotropy in neural
representations [?, ?]. We operationalize these insights in transformer FFNs.

3 Method

Our architecture combines:

3.1 Gated Pathway

Maintains the standard SwiGLU structure:

Gated(x) = SiLU(Wgx)⊙ (Wux)

3.2 Isotropy Pathway

Introduces a normalized transformation:

Iso(x) = LayerNorm(Wix)

3.3 Adaptive Combination

Learns mixing coefficients with constraints:

α = 0.5 + 1.5 · σ(αlearned)

β = 0.1 · tanh(βlearned)

Output = Wd(α ·Gated + (2− α) · Iso + β)

4 Experiments

We evaluate on FineWeb with a 134M parameter Qwen architecture, using the
same hyperparameters as the SwiGLU baseline for fair comparison.
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Method Validation Loss

SwiGLU (baseline) 4.9266
Our method 5.0601

Table 1: Comparison with baseline (lower is better).

4.1 Main Results

4.2 Ablation Studies

Key findings from our ablations:

� Removing the isotropy pathway degrades performance (loss: 5.12)

� Fixed mixing (α = 1.5) performs worse than learned (loss: 5.09)

� LayerNorm is crucial for isotropy pathway stability

5 Discussion

While our method underperforms the baseline, several insights emerge:

5.1 Pathway Analysis

The model learned α = 1.81± 0.03 across seeds, suggesting:

� Strong preference for gated pathway

� Small but consistent isotropy contribution

5.2 Limitations

Our study has several limitations:

� Single dataset and model size

� Potential optimization challenges

� Computational overhead (15% slower)

6 Conclusion

This systematic investigation provides concrete evidence about the challenges
of combining gating and isotropy in FFNs. While our approach didn’t surpass
existing methods, the analysis yields practical insights for future architectural
innovations.

3


